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This is the �rst post in a series extending stochastic calculus to in Banach
spaces. Our �rst topic is the Bochner integral. That is, the extension of the
Lebesgue integral to functions valued in Banach spaces.

1 Three line summary

� The Bochner integral is a way of integrating functions f from a measure
space to a Banach space.

� Like the Lebesgue integral, it is �rst constructed for piecewise constant
functions A and extended continuously to the completion A.

� The completion A can be explicitly described as the space of functions
with separable image and with �nite L1 norm. This naturally leads to
the de�nition of Lp spaces.

2 Notation

We consider a measure space (Ω,F , µ) and a Banach space (E,B(E)) where
B is the Borel sigma-algebra (that is, the smallest σ-algebra on E containing
all of the open sets) of E. We will abbreviate that f : Ω → E is measurable
as f : F → B(E).
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3 The Bochner integral

Ok, lets get right to it, our goal is to de�ne integration for functions valued
in a Banach space

f : (Ω,F , µ) → ((E, ∥·∥),B(E))

As anticipated, we �rst consider the class of simple functions

A =

{
n∑

k=1

xk1Ak
;xk ∈ E Ak ∈ F

}
.

We can de�ne their integral quite naturally as∫
fdµ =

∫ n∑
k=1

xk1Ak
dµ =

n∑
k=1

xkµ(Ak)

If we take equivalence classes, identifying functions that are equal µ almost
everywhere, we can de�ne the norm

∥f∥A :=

∫
Ω

∥f∥dµ.

Then we get that integration is a linear and absolutely continuous function∫
Ω

·dµ : (A, ∥·∥A) → (E, ∥·∥).

As, by a calculation, for all f ∈ A.∥∥∥∥∫
Ω

f

∥∥∥∥ ≤
∫
Ω

∥f∥dµ = ∥f∥A

Since E is a Banach space, this shows that we can extend [1] integration in
a unique way to the completion A of (A, ∥·∥A). Of course, now the key is
knowing what this space A is so we can �gure out what kind of functions we
can actually integrate. Our next de�nitions are motivated by this.

De�nition 1. We say a function f : (Ω,F) → (E,B(E)) is strongly mea-

surable if f is measurable f(Ω) is separable.



De�nition 2. For 1 ≤ p < ∞ we de�ne

Lp(Ω,F , µ, E) =

{
f : Ω → X : f is strongly measurable and

∫
∥f∥pdµ < ∞

}
.

L̂p(Ω,F , µ, E) =

{
f : Ω → X :

∫
∥f∥pdµ < ∞

}
.

We also de�ne the semi-norms

∥f∥Lp(Ω→E) :=

(∫
∥f∥pdµ

)1/p

, f ∈ Lp(Ω,F , µ, E).

∥f∥L̂p(Ω→E) :=

(∫
∥f∥pdµ

)1/p

, f ∈ L̂p(Ω,F , µ, E).

Finally we take equivalence classes by the above semi-norms to obtain the

metric spaces Lp(Ω → E) and L̂p(Ω → E).

An adaptation of the proof of the completion of Lp spaces proves that Lp(Ω →
E) and L̂p(Ω → E) are also complete.

Proposition 1. Given a Banach space E, the space of p integrable strongly

measurable and measurable functions Lp(Ω → E), L̂p(Ω → E) are Banach

spaces.

Proof. The proof is identical in both cases so we prove it only for f ∈ Lp(Ω →
E) It su�ces to show that if fn is such that

∞∑
n=1

∥fn∥Lp(Ω→E) < ∞.

Then there exists f ∈ Lp(Ω → E) such that

f =
∞∑
n=1

fn ∈ Lp(Ω → E).

To do so one �rst applies [Minkowski's] inequality for real valued functions
to show that

∞∑
n=1

∥fn∥X ∈ Lp(Ω → R).



Thus, the sum is �nite almost everywhere. Since E is complete we have that
the above sum converges pointwise almost everywhere to some function

f(ω) :=
∞∑
n=1

fn(ω) ∈ E.

Furthermore we have that f is strongly measurable as it is the limit of
strongly measurable functions (this is a small exercise). Finally, by Fatou's
lemma for real valued functions and the triangle inequality for norms∥∥∥∥∥f −

N∑
n=1

fn

∥∥∥∥∥
Lp(Ω→E)

=

∥∥∥∥∥
∞∑

n=N

fn

∥∥∥∥∥
Lp(Ω→E)

≤ lim inf
M→∞

∥∥∥∥∥
M∑

n=N

fn

∥∥∥∥∥
Lp(Ω→E)

≤ lim inf
M→∞

M∑
n=N

∥fn∥Lp(Ω→X) =
∞∑

n=N

∥fn∥Lp(Ω→X)

N→∞−−−→ 0.

Which shows convergence in Lp(Ω → E).

Just as in the case of Lebesgue integrals the proof of the completeness of
Lp(Ω → E) serves to show that every convergent sequence must have a
subsequence converging almost everywhere. This proposition is not necessary
for the rest of the constructions, it's just a nice property to have in reserve.

Proposition 2. Let fn → f ∈ Lp(Ω → E), then there exists a subsequence

fnk
converging to f almost everywhere.

Proof. In the proof of the above proposition we saw that for any absolutely
convergent sum converges almost everywhere to its limit. Further, since fn
is Cauchy, we can extract a subsequence fnk

with ∥fnk
− fnk−1

∥ ≤ 2−k. By
construction the sequence

∞∑
k=0

fnk
− fnk−1

,

is normally convergent and converges in f . By the above discussion we
conclude the proof.

Ok, so we've constructed some spaces of p-integrable functions, and shown
that they are complete. You know where this is going, next stop is density



town. In the standard construction of the Lebesgue integral it is used that
every measurable function to R can be pointwise approximated by simple
functions. One can achieve the same result for arbitrary metric spaces if the
image of f is separable.

Lemma 1. Let (E, d) be a metric space and let f be strongly measurable.

Then f is the pointwise limit of simple functions fn ∈ A. Furthermore,

dn(ω) := d(fn(ω), f(ω)) is a non-increasing sequence for each ω ∈ Ω

Proof. Consider a countable dense subset {ek}∞k=1 of f(Ω). Now de�ne φ :
E → E

φn(e) := ej where d(ej, e) = min
1≤m≤n

d(e, em).

And de�ne fn := φn ◦ f . A bit of thought shows that φn is continuous
and thus so is fn (remember we are considering the Borel σ-algebra) on E.
Furthermore, since for each �xed ω the above distance goes to 0 we have that

lim
n→∞

fn(ω) = f(ω), ∀ω ∈ Ω.

Finally, fn is simple as fn(Ω) ∈ {e1, ..., en} and the non-increasing property
of dn(ω) is clear by construction.

In the above proof we see that the reason for requiring that the image of our
class of integrable functions be separable is so that we can approximate them
by simple functions.

Proposition 3. Every function f ∈ L1(Ω → E) is the limit of simple func-

tions.

Proof. Since f is strongly measurable, we can apply the above lemma to
obtain a sequence of simple functions fn converging pointwise and monotoni-
cally to f . Furthermore we have that, by the monotone convergence theorem
for integrals in R,

lim
n→∞

∥fn − f∥L1(Ω→E) = lim
n→∞

∫
Ω

∥fn − f∥dµ =

∫
Ω

lim
n→∞

∥fn − f∥dµ = 0.

As a corollary we obtain the following

Corollary 1. A is a dense subset of
(
L1(Ω → E), ∥·∥L1(Ω→E)

)
.



In consequence, since we already saw that L1(Ω → E) is complete, we have
that A = L1(Ω → E). This is exactly the space of integrable functions.

De�nition 3. We de�ne the integral on L1(Ω → E) as the unique continuous
extension with the norm ∥·∥L1(Ω→E) of the integral on A. That is, given

f ∈ L1(Ω → E) we de�ne ∫
Ω

fdµ := lim
n→∞

∫
Ω

fndµ.

Where fn ∈ A is any sequence such that ∥f − fn∥L1(Ω→E) → 0.

The typical properties are now just a result of the de�nition and a passage
to the limit, as they hold for simple functions.

Corollary 2. Let f ∈ L1(Ω, E) with E a Banach space, then

1.
∥∥∫

Ω
fdµ

∥∥ ≤
∫
Ω
∥f∥dµ

2. Let Y be another Banach space and L ∈ L(E, Y ). Then∫
Ω

(L ◦ f)dµ = L

(∫
Ω

fdµ

)
.

Ok, that's it, this post was a bit more technical than some of the others
but you get the picture. De�ne an integral for simple functions, and �gure
out what can be approximated by simple functions. As we saw, the extra
requirement that appears over the Lebesgue case is that the function f is
separately valued and justi�es why, as we will see in future posts on SPDEs,
the image of f is often taken to be some separable Hilbert space. Until the
next time!
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