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This is the �rst post of many to come on this blog, thanks for joining! This is
also the �rst in a series on Malliavin calculus. This chain is based on the book
by Oksendal and Nunno [1], and inspired by a reading group on the topic.

1 Wiener Itô chaos expansion

1.1 Three line summary

� Square integrable deterministic functions of multiple variables can be re-
peatedly Itô integrated to get a square-integrable random function.

� Repeated integration satis�es an isometry.

� Every square-integrable function can be uniquely written as the sum of
repeated integrals.

1.2 Why this is important

The chaos expansion gives us a way to represent random variables as a sum of
functions in L2. This representation can be used to de�ne the Skorohod integral
[2].

1.3 Iterated integrals

We will write Ft for the completion of the natural �ltration generated by W (t),
on some measure space Ω and consider an interval I = [0, T ] or I = [0,+∞). In
this second case we say that T = ∞. We also recall the notation

M2
t := {f ∈ L2([0, t]× Ω) that are continuous martingales}.

We will work with the spaces L2(In), L2
S(I

n), L2(Sn) of respectively square-
integrable functions, symmetric square-integrable functions, and square-integrable
functions on

Sn := {0 ≤ t0 ≤ . . . ≤ tn ≤ T}.
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Since these functions don't involve a random variable we call them deterministic.
Given f ∈ L2(In) we denote its symmetrization by

fS :=
1

n!

∑
σ

f(tσ1 , . . . , tσn).

Where σ is summed over all the permutations of {1, . . . , n}. Note that if f
is already symmetric then f = fS . Given a deterministic function we can
transform it into a random one by taking its Itô integral. By integrating multiple
times we obtain the following de�nition

De�nition 1. Let f ∈ L2(Sn), then we de�ne the n-fold Itô integral as

Jn(f) :=

∫
I

· · ·
∫ t3

0

∫ t2

0

f(t1, . . . , tn)dW (t1)dW (t2) . . . dW (tn).

The de�nition requires some care to make sense of and to make sure it is well
de�ned. For example, note that the variables appearing in the upper bounds of
the integration domain are the same as those appearing as integration variables.
To better understand the de�nition, �rst note that, by the properties of the Itô
integral, for each t2 ≤ · · · ≤ tn,

F2(t2 . . . , tn) :=

∫ t2

0

f(t1, . . . , tn)dW (t1) ∈ M2
t3 .

Where F2(·, t3, . . . , tn) ∈ M2
t3 is viewed as a function of t2. Due to the above

inclusion F2(·, t3, . . . , tn) is Itô integrable and

F3(t3 . . . , tn) :=

∫ t3

0

F2(t2, . . . , tn)dW (t2) ∈ M2
t4 .

Where the above is viewed as a function of t3. Iterating this process we get that
Fn ∈ M2

T and

Jn(f) =

∫
I

Fn(tn)dW (t2) ∈ L2(Ω).

To notice the subtleties involved, we note that one example of an integral that
would be ill-de�ned however is if for f ∈ L2(In) we de�ned

Jn(f) :=

∫
I

· · ·
∫
I

∫
I

f(t1, . . . , tn)dW (t1)dW (t2) . . . dW (tn).

In this case, we have that the �rst integral is FT adapted and not Ft2 adapted
so we cannot continue integrating! As a result, we instead give the following
de�nition for symmetric functions.

De�nition 2. Let f ∈ L2
S(I

n), then we de�ne

In(f) :=

∫
I

· · ·
∫
I

∫
I

f(t1, . . . , tn)dW (t1)dW (t2) . . . dW (tn) := n!Jn(f).



Where it is important to note that the second equality is by de�nition and where
the rescaling factor is motivated by the fact that, by counting permutations, if
I is �nite then µ(In) = n!µ(Sn).

Proposition 1 (Itô's n-th isometry). Let f, g ∈ L2(Sn) then

⟨Jn(f), Jm(g)⟩L2(Ω) = ⟨f, g⟩L2(Sn)
δnm

Proof. The proof is an application of Itô's (product) isometry to move the expec-
tation into the iterated integrals. If the number of integrals is unequal (n ̸= m)
you get the expectation of an Itô integral which is zero. Otherwise, you just get
the (deterministic) inner product.

As a result, we also get by a calculation that if f, g ∈ L2(In) then

⟨In(f), Im(g)⟩L2(Ω) = n! ⟨f, g⟩L2(In) δnm.

1.4 The chaos expansion

Lemma 1 (Itô's representation theorem). Let ξ ∈ L2(Ω,F∞), then there exists

a unique X(t) ∈ L2(I) such that

ξ = E[ξ] +
∫
I

X(t)dW (t).

Furthermore it holds that ∥X∥L2(I×Ω) ≤ ∥ξ∥L2(Ω).

Theorem 1 (Chaos expansion). Let ξ ∈ L2(Ω,F∞), then there exists a unique

sequence of functions gn ∈ L2(Sn), fn ∈ L2(In) such that

ξ =

∞∑
n=0

Jn(gn); ξ =

∞∑
n=0

In(fn).

Proof. The proof is a bit technical but we sketch the main idea which is to
iteratively apply Itô's representation theorem to get

ξ = E[ξ] +
∫
I

X1(t)dW (t1) = E[ξ] +
∫
I

E[X1(t1)]dW (t1)

+

∫
I

∫ t2

0

X2(t1, t2)dW (t1)dW (t2) = . . . =

N∑
n=0

Jn(fn)+

∫
SN+1

XN+1dW
⊗(N+1).

Where g0 = E[ξ], g1(t1) = E[X1](t1) and so on. By an iteration we deduce that
if we write ϕN+1 for the last integral term, then

E[ϕN+1] ≤ . . . ≤ E[ξ2].



Furthermore, by Itô's n-th isometry we have that the terms in the above sum
are orthogonal so

∥ξ∥L2(Ω) =

N∑
n=0

∥Jn(gn)∥L2(Ω) + ∥ϕN+1∥L2(Ω).

Since the last term is bounded, we obtain a bound on the L2(Ω) norm of the
sum uniform in n so the sum converges. As a result, so does ϕN to some ϕ∞.
It su�ces to see that ϕ∞ = 0. This can be proved using that, by Itô's n-th
isometry, ϕN+1 is orthogonal to Jn(h) for any h ∈ L2(Ω) and n ≤ N . As a
result the limit ϕ∞ is orthogonal to Jn(h) for all n and by a density argument
(there are a lot of these functions Jn(h)!) we obtain ϕ∞ = 0. This proves the
�rst sum of the theorem.

It remains to prove the second part, but this follows by extending the gn by
0 on In \ Sn and taking fn to be the symmetrization of this extension.
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