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Malliavin calculus

1 The Malliavin derivative as a Fréchet derivative

Let C0([0,T ]) be the Banach space of all continuous functions f : [0,T ]→R such that f (0) = 0.
On this space, we can associate a special Borel probability measure µ such that Wt(ω) := ω(t)
is a Brownian motion. Given a random variable on C0([0,T ]), i.e. a µ-measurable function
X : C0([0,T ]) → R, we want to know how the value X(ω) changes upon perturbing the path
ω by a small quantity γ ∈ C0([0,T ]). This can be described by the Fréchet derivative ∇X(ω),
which is a bounded linear map C0([0,T ]) → R, i.e. a member of the dual space C0([0,T ])∗,
giving the best linear approximation to the difference X(ω + γ)−X(ω). Formally, ∇X satisfies

X(ω + γ) = X(ω)+ ⟨∇X(ω),γ⟩+o(∥γ∥C0([0,T ])).

If X has a Fréchet derivative ∇X : C0([0,T ])→C0([0,T ])∗, we say it is Fréchet differentiable.
Within the Banach space C0([0,T ]) lies a Hilbert space H of distinguished elements. This is

the space of paths of the form

γ(t) =
∫ t

0
ψ(s) ds

for some ψ ∈ L2([0,T ]). In other words, it is the space of W 1,2 functions on [0,T ] starting at 0.
Its inner product is given by

(γ1,γ2)H = (γ̇1, γ̇2)L2([0,T ]).

H is continuously imbedded in C0 by the theory of Sobolev spaces. We call H the Cameron-
Martin space. It acts in some sense as the heart of C0([0,T ]) with the probability measure µ ,
with its elements having better analytical properties compared to a general element in C0([0,T ]).
Ideally, we could restrict µ to this space and only work here, but unfortunately µ is not a measure
on H (in particular, it is not σ -additive), forcing us to work in a larger Banach space.

Returning to our Fréchet differentiable random variable X , given some path ω ∈C0([0,T ]),
we consider the restriction of its derivative at ω to H, namely ∇X(ω)|H . Since H is continously
imbedded in C0, this restriction is an element of H∗. Then, as H is a Hilbert space, the dual
space H∗ is isomorphic to H through its inner product, so there exists some DX(ω) ∈ L2([0,T ])
such that 〈

∇X(ω),
∫ ·

0
ψ dt

〉
=

(∫ ·

0
DtX(ω) dt,

∫ ·

0
ψ dt

)
H
=

∫ T

0
DtX(ω)ψ(t) dt.

This object DX is precisely the Malliavin derivative of X .

2 The Skorokhod integral and the Malliavin derivative

Given a stochastic process (Xt)t∈[0,T ] ∈ L2([0,T ]×Ω,dt ⊗P) such that Xt is FT -measurable for
all t ∈ [0,T ], let

Xt =
∞

∑
n=0

In( fn(·, t))
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2. The Skorokhod integral and the Malliavin derivative

be its chaos expansion for some fn ∈ L2([0,T ]n+1) symmetric in the first n variables. Recall we
say X is Skorokhod integrable, and define its Skorokhod integral by∫ T

0
Xt δWt :=

∞

∑
n=0

In+1( fn,S),

whenever this sum converges in L2(Ω). The following result is fundamental.

1 Theorem. The Skorokhod integral and Malliavin derivative are adjoint in the following sense:
Let (Xt)t∈[0,T ] be a Skorokhod-integrable. Let Y ∈D1,2 be a Malliavin differentiable random

variable. Then (
Y,

∫ T

0
Xt δWt

)
L2(Ω)

= (DY,X)L2([0,T ]×Ω).

More concretely,

E
[
Y
∫ T

0
Xt δWt

]
= E

[∫ T

0
DtY Xt dt

]
.

Proof. As usual, we apply the definitions in terms of the chaos expansions. Let

Xt =
∞

∑
n=0

In( fn(·, t))

be the chaos expansion of X , and

Y =
∞

∑
n=0

In(gn)

the chaos expansion of Y . Then

E
[
Y
∫ T

0
Xt δWt

]
= E

[
∞

∑
n=0

In(gn)
∞

∑
m=0

Im+1( fm,S)

]

=
∞

∑
n=0

∞

∑
m=0

E[In(gn)Im+1( fm,S)]

=
∞

∑
n=0

n!(gn, fn−1,S)L2([0,T ]n),

and on the other side,

E
[∫ T

0
DtY Xt dt

]
=

∫ T

0
E

[
∞

∑
n=1

nIn−1(gn(·, t))
∞

∑
m=0

Im( fm(·, t))

]
dt

=
∫ T

0

∞

∑
n=0

∞

∑
m=0

nE[In−1(gn(·, t))Im( fm(·, t))] dt

=
∞

∑
n=0

n(n−1)!
∫ T

0
(gn(·, t), fn−1(·, t))L2([0,T ]n−1) dt

=
∞

∑
n=0

n!(gn, fn−1)L2([0,T ]n).
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Malliavin calculus

Finally, by definition of the symmetrization,

(gn, fn−1,S)L2([0,T ]n) =
∫
[0,T ]n

gn(t1, . . . , tn)
1
n

n

∑
k=1

f (t1, . . . , tk−1, tn, tk+1, . . . , tn−1, tk) dt1 · · ·dtn

=
1
n

n

∑
k=0

∫
[0,T ]n

gn(t1, . . . , tn) fn−1(t1, . . . , tn) dt1 · · ·dtn

= (gn, fn−1)L2([0,T ]n),

where we change variables tk 7→ tn, tn 7→ tk, use the property that gn is symmetric, and apply
Fubini’s theorem.

2 Remark. The symbol δ is often used for a divergence-like operator in Hodge theory. The
analogy with our case is that in the Hodge situation, δ is defined via a duality formula which
looks like ⟨dα,β ⟩ = ⟨α,δβ ⟩, where d is the exterior derivative on differential forms. Indeed,
even in vector calculus, the negative of the divergence is in some sense adjoint to the gradient:∫

Ω

div f φ dx =−
∫

Ω

f ·∇φ dx

whenever φ has zero boundary. So, in a sense, the Skorokhod integral is just a divergence
operator.

Using this, we can immediately prove the following:

3 Corollary. Let (Xn)n∈N be a sequence of Skorokhod-integrable stochastic processes. Suppose
there exist X ∈ L2([0,T ]×Ω) and Y ∈ L2(Ω) such that XN → X in L2([0,T ]×Ω), and δXN →Y
in L2(Ω). Then X is Skorokhod integrable, and δXN → δX.

Proof. Recall that Skorokhod integrability of X can be expressed in terms of convergence of the
series

∞

∑
n=0

(n+1)!∥ fn,S∥2
L2([0,T ]n+1),

where fn(·, t) are the components of the chaos expansion of X . Since XN → X strongly in L2,
and each XN is Skorokohod integrable, the components of their chaos expansions must satisfy
the above condition, and we can take limits.

Let Z ∈ D1,2. Then by adjointness,

(Z,δXN)L2(Ω) = (DZ,XN)L2([0,T ]×Ω).

Taking limits on both sides and using adjointness on the limiting objects gives us

(Z,Y )L2(Ω) = (DZ,X)L2([0,T ]×Ω) = (Z,δX)L2(Ω).

Then, since D1,2 is dense in L2(Ω), we see that Y = δX a.s., as required.

4 Remark. Perhaps a more intuitive way to say the Skorokhod integral is “closable” in the book’s
words is that it is sequentially continuous as a map D(δ )⊆ L2([0,T ]×Ω)→ L2(Ω) with respect
to the strong L2 topology in its domain and weak L2 topology in its codomain.
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2. The Skorokhod integral and the Malliavin derivative

5 Theorem. Let X ∈ L2([0,T ]×Ω) be a Skorokhod integrable random process, and let Y ∈D1,2

be such that FX is also Skorokhod integrable. Then

Y
∫ T

0
Xt δWt =

∫ T

0
Y Xt δWt +

∫ T

0
DtY Xt dt

almost surely.

Proof. Suppose Y has finite chaos expansion, and choose some Z ∈ D1,2 also with finite chaos
expansion. Then by adjointness and the product rule,

E
[

Z
∫ T

0
Y Xt δWt

]
= E

[∫ T

0
DtZY Xt dt

]
= E

[∫ T

0
(Dt(Y Z)−ZDtY )Xt dt

]
= E

[
Y Z

∫ T

0
Xt δWt

]
−E

[
Z
∫ T

0
DtY Xt dt

]
.

Since the set of all test functions Z ∈ D1,2 with finite chaos expansion is dense in L2(Ω), we
conclude the result for Y with finite chaos expansion. For general Y , we approximate.

6 Remark. A similar formula crops up in vector calculus, namely the following:

div( f X) = ∇ f ·X + f divX ,

where f is a scalar function and X a vector field. Again, in the above theorem, the Malliavin
derivative takes the place of the gradient, the Skorokhod integral take the place of the divergence,
and the usual inner product on Rn (the dot product) is replaced with the L2([0,T ]) inner product.
There is a sign difference owing to the fact the adjointness in the Malliavin case does not induce
a sign change, unlike in the vector calculus case (see the remark above).

7 Theorem. Let X ∈ L2([0,T ]×Ω) be a stochastic process such that for all s ∈ [0,T ], Xs is in
D1,2, DXs is Skorokhod integrable, and∫ T

0
DXs δWs ∈ L2([0,T ]×Ω).

Then δX lies in D1,2, and

Dt(δX) =
∫ T

0
DtXs δWs +Xt .

8 Remark. The technical constraints in the theorem above are an unfortunate consequence of the
fact the Skorokhod and Malliavin operators δ and D are not defined on the full space L2([0,T ]×
Ω) and L2(Ω) respectively - we have to ensure an operator throws us to the right spot before we
can consider applying the other one.

Note that this theorem is simply an expression of the Malliavin derivative and Skorokhod
integral’s failure to commute, with the error simply being the identity on L2(Ω× [0,1]). That is,

Dδ = δD+ id .

This contrasts with our vector calculus analogy, where the divergence and gradient most certainly
commute (assuming enough regularity).
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