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1 Three point summary

� Elliptic partial di�erential equations (PDE) are PDE with no time variable and whose leading
order derivatives satisfy a positivity condition.

� Using Lax Milgram's theorem, we can prove the existence and uniqueness of weak (distri-
butional) solutions if the reaction term dominates the transport term. Using the Fredholm
alternative, we can characterize the spectrum of the elliptic operator and the existence of
solutions.

� Under suitable smoothness assumptions on the coe�cients and domain, the solution map of
the PDE adds two derivatives to the input function. This improved regularity allows us to
recover classical solutions if the coe�cients are smooth enough.

2 Why should I care?

Many problems arising in physics, such as the Laplace and Poisson equation, are elliptic PDE.
Furthermore, the tools used to analyze them can be extrapolated to other settings, such as parabolic
PDE (depending on your viewpoint this may be a bit circular). The analysis also helps contextualize
and provide motivation for theoretical tools such as Hilbert spaces, compact operators and Fredholm
operators.

3 Notation

We will use Vinogradov notation f ≲ g to mean that there exists a constant C > 0 such that
f ≤ Cg. If we want to emphasize that the constant depends on a parameter α, we will write
f ≲α g.
We �x U ⊂ Rd to be an open subset of Rn with no conditions on the regularity of ∂U . If we

need to impose regularity on the boundary, we will write Ω instead of U . Finally, we will write

∇ · (A∇) =

d∑
i,j=1

∂iAij∂j .
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4 Introduction

Welcome back to the second post on our series of PDE. In post 4, we gave a physical derivation of
PDE (both parabolic and elliptic) that justify why we are interested in such equations. In posts
1, 2, 3, 5 of the series we built up the theoretical framework necessary to de�ne Sobolev spaces,
spaces of weakly di�erentiable functions to which we could extend the concept of di�erentiation (I
know, the order is a bit messed up). We are now going to use the previous theory to study these
equations.

5 The problem: Mathematical framework

We consider the following problem: given a bounded open set U ⊂ Rn and some coe�cients A, b, c,
we want to solve the following elliptic PDE{

Lu := −∇ · (A∇u) +∇ · (bu) + cu = f, in U,

u = 0, on ∂U,
(1)

where f : U → R is some known function, u is the solution we want to �nd. In the case where
U = Rd the boundary condition is vacuous as ∂Rd = ∅.
We recall from post 4 that physically; we can interpret u as the density of some substance, A as

a di�usion matrix, b as a transport vector, c as a reaction coe�cient and f as the source term. For
the mathematical theory, we will need some conditions on the coe�cients. Primarily, we require
that A is elliptic.

De�nition 5.1 (Ellipticity). Given A : U → Rd×d, b : U → Rd and c : U → R we say that the

operator

Lu := −∇ · (A∇u) +∇ · (bu) + c (2)

is elliptic if there exists α > 0 such that

ξTA(x)ξ ≥ α |ξ|2 , ∀ξ ∈ Rd, ∀x ∈ U. (3)

We also say that A is elliptic.

There are some points to clear up. Firstly, if this is the �rst time you've encountered the ellipticity
condition in (3), then it may seem a bit strange. With the previous physical interpretation, the
ellipticity condition (3) says that di�usion occurs from the region of higher to lower density. Math-
ematically speaking, (3) will prove necessary to apply Lax Milgram's theorem and obtain regularity
estimates on u.
Next, when developing the mathematical theory of any equation, the �rst step is to establish

whether the equation is well-posed.

De�nition 5.2 (Well-posedness). We say that an equation is well-posed if

1. It has a solution.

2. The solution is unique.

3. The solution depends continuously on the data.
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The above de�nition originates from the work of Hadamard and is standard in the context of
PDE. The three properties above make the problem nice to work with and may be familiar from
the basic theory of ODE. However, not all problems are well-posed. Ill-posedness often arises when
one works with inverse problems, such as the backward heat equation, where one tries to recover
the initial heat distribution from the �nal one.
The well-posedness of any given PDE is highly contingent on the space considered. In our case,

we still need to de�ne which function space our coe�cients A,b, c live in and what space L acts on.
It would be natural to assume that we need A and b to be di�erentiable. However, the following
will su�ce.

Assumption 1. We assume that Aij , bi, c ∈ L∞(U) for all i, j = 1, . . . , d. Furthermore, A is
symmetric (Aij = Aji) and elliptic.

In the future, i, j will always run from 1 to d, where d is the dimension of the space.

Observation 1. We lose no generality by assuming that A is symmetric as ∂iju = ∂jiu. If A is
not symmetric, we can replace A by (A+AT )/2 and equation (1) will remain unchanged.

The �rst part of Assumption 1 will make it easy to get bounds on L, and the second part will
prove useful when we look at the spectral theory of L. Now, to make sense of our problem (1), we
need to de�ne what we mean by a solution. Here, the theory of Sobolev Spaces and the Fourier
transform prove crucial. We will work with the following space.

De�nition 5.3 (Negative Sobolev space). Given k ∈ N we de�ne

H−k(U) := Hk
0 (U)′

For more details on why we denote the dual using negative exponents, see the relevant section in
the previous post on fractional Sobolev spaces. We recall also that every element in H−k(U) can
be written as the sum of derivatives up to order k of a function in L2(U).

Exercise 1. Suppose Aij , bi, c ∈ L∞(U). Then, L de�nes a bounded linear operator

L : H1
0 (U) → H−1(U).

Hint. By de�nition of the weak derivative, show that given v ∈ C∞
c (U),

(v,Lu) =
∫
U
A∇v · ∇u+

∫
U
b · ∇vu+

∫
U
cvu.

Use this to conclude that,

|(v,Lu)| ≲ ∥v∥H1(U) ∥u∥H1(U) .

So, Lu ∈ H−1(U) is well de�ned and L is bounded. Extend by density to H1
0 (U).

Exercise 1 allows us to de�ne the weak formulation of (1) and study its well-posedness using Lax
Milgram's theorem. We will do this in the next section.

6 Weak solutions and well-posedness

By Exercise 1, we can make sense of the equation Lu = f for all f ∈ H−1(U).
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De�nition 6.1 (Weak formulation). Given f ∈ H−1(U), we say that u ∈ H1
0 (U) solves equation

(1) if

B(u, v) := (v,Lu) =
∫
U
A∇u · ∇v +

∫
U
b · (∇u)v +

∫
U
cuv = (v, f), ∀v ∈ H1

0 (U). (4)

In (4) we used the �duality notation� (v, f) := f(v) for f ∈ X, v ∈ X ′ (hereX = H1
0 (U)). We have

now reformulated our problem to something that looks very similar to the setup of Lax Milgram's
theorem and can use this to prove the well-posedness of (1) under certain conditions.

Theorem 6.2. Let U ⊂ Rd be an arbitrary open set. Suppose Assumption 1 holds and let b = 0.
Then, if c > 0 equation (1) is well-posed, and we have the homeomorphism

L : H1
0 (U)

∼−→ H−1(U).

If U is bounded, the above also holds for c ≥ 0.

Proof. The continuity of B is a consequence of Exercise 1. It remains to see that B is coercive. For
smooth u ∈ C∞

c (U) we have that

B(u, u) =

∫
U
A∇u · ∇u+

∫
U
cu2 ≥ α ∥∇u∥2L2(U→Rd) +

∫
U
cu2 ≳ ∥u∥2H1

0 (U) . (5)

Where in the �rst inequality, we used the ellipticity assumption on A, and in the last inequality, we
used Poincaré's inequality if U is bounded. The result now follows from Lax Milgram's theorem.

Theorem 6.2 is an example of the advantages of working with a weak formulation instead of
solutions di�erentiable in a classical sense. The weak formulation allows us not only to make sense
of our equation (1) for a wider class of coe�cients but also provides a natural framework to study
the well-posedness of (1).

Exercise 2. Show that, under the conditions of Theorem 6.2, if U is bounded, there is a countable
basis of eigenfunctions for L.

Hint. By Rellich's theorem L−1 : L2(U) → L2(U) is compact and, since b is 0, L is also is self
adjoint. As a result, so there is a countable basis of eigenvectors in L2(U).

In Theorem 6.2, we somewhat unsatisfyingly had to impose the extra assumption that b was
identically zero and that c > 0. These extra assumptions can be done away with but at the cost of
modifying our initial problem by a correction term γ so we can obtain a coercive operator Bγ .

Theorem 6.3 (Modi�ed problem). Let U ⊂ Rd be any open set and let Assumption 1 hold. Then,

there exists some constant ν ≥ 0 (depending on the coe�cients) such that for all γ ≥ ν the operator

Lγ := L+ γI is positive de�nite and de�nes a homeomorphism

Lγ : H1
0 (U)

∼−→ H−1(U).

That is, the problem Lu+ γu = f is well-posed for all γ > ν.

Proof. Once more, the proof will go through the Lax-Milgram theorem, where now we work with
the bilinear operator Bγ associated with Lγ

Bγ(u, v) := (v,Lγu) = B(u, v) + γ(u, v).
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The calculation proceeds similarly to (5). We recall the Cauchy inequality

ab ≤ ε

2
a2 +

1

2ε
b2, ∀a, b ∈ R, ε > 0, (6)

which can be checked directly by using that (c− d)2 ≥ 0. Applying (6) to a = ∇u and b = v, shows
that

B(u, u) =

∫
U
(A∇u) · ∇u+

∫
U
b · (∇u)u+

∫
U
cu2 ≥ α ∥∇u∥2L2(U→Rd)

− 1

2
∥b∥L∞(U)

(
ε ∥∇u∥2L2(U) + ε−1 ∥u∥2L2(U)

)
− ∥c∥L∞(U) ∥u∥

2
L2(U) .

Taking ε small enough (smaller than α ∥b∥−1
L∞(U) to be precise) and gathering up terms gives

B(u, u) ≥ α

2
∥∇u∥2L2(U→Rd) − ν ∥u∥2L2(U) . (7)

Where we de�ned ν = ∥b∥L∞(U) ε
−1 + ∥c∥L∞(U). The theorem follows from (7) as for all γ > ν

Bγ(u, u) = B(u, u) + γ ∥u∥2L2(U) ≥
α

2
∥∇u∥2L2(U→Rd) + (γ − ν) ∥u∥2L2(U) ≳ ∥u∥2H1

0 (U) . (8)

Equation (8) also shows that Lγ is positive de�nite and the proof is complete.

6.1 Fredholm alternative

We now analyze further what we can say about the well-posedness of (1). What has to happen for
the equation to be ill-posed? If there are multiple solutions, what does the space of solutions look
like? As we will see, this is intimately linked to the spectrum of the operator L and the Fredholm
alternative will provide the answers we are looking for,
We begin by considering Lu = λu + f , which is a small generalization of our original problem

(1). We take γ > |λ| large enough as in Theorem 6.3 and note that

Lu = λu+ f ⇐⇒ Lγu = (γ + λ)u+ f. (9)

Now write µ := (γ + λ) and rename v := µu + f . An algebraic manipulation shows that (9) is
equivalent to

(I − µL−1
γ )v = f, (10)

where I is the identity operator. Suppose now that U is bounded, then, by Rellich's theorem, we
know that the following inclusion is compact

i : H1(U) ↪→ L2(U).

As a result, by Theorem 6.2, we deduce that L−1
γ : L2(U) → L2(U), which we are now viewing as

an operator on L2(U), is compact. More precisely,

K := i ◦ L−1
γ

∣∣
L2(U)

is compact and the reasoning in (9), (10) shows that, given f ∈ L2(U), and u ∈ H1
0 (U)

Lu = λu+ f ⇐⇒ Tv := (I − µK)v = f. (11)

Equation (11) is exactly the form the Fredholm alternative takes (µ can be incorporated into the
compact operator K) and justi�es the following.
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Theorem 6.4. Let U ⊂ Rd be bounded, let L verify Assumption 1, and λ ∈ R, f ∈ L2(U) be any.

Consider the problems

Lu = λu+ f and u ∈ H1
0 (U) (12)

Lu = λu and u ∈ H1
0 (U) (13)

Then, the following hold:

1. Equation (12) is well-posed if and only if (13) has no non-zero solutions. That is, if and only

if λ /∈ σ(L).

2. The spectrum σ(L) is discrete. If σ(L) = {λn}∞n=1 is in�nite, then λn → +∞.

3. The dimensions of the following spaces are equal

N :=
{
u ∈ H1

0 (U) : Lu = λu
}
, N∗ :=

{
w ∈ L2(U) : L∗w = λw

}
,

4. Equation, (12) has a solution if and only if f ∈ (N∗)⊥ (equivalently ⟨w, f⟩ = 0 for all w ∈ N∗).

Proof. Given f ∈ L2(U) and λ ∈ R as before, we consider γ > |λ| large and de�ne

Lγ := L+ γI, K := i ◦ L−1
γ

∣∣
L2(U)

, µ := γ + λ, T := (I − µK)

, where i : H1(U) ↪→ L2(U) is the inclusion. Consider the following two problems,

Tv = f and v ∈ L2(U), (14)

Tv = 0 and v ∈ L2(U). (15)

The reasoning in (11) showed that a solution u to (12) gives a solution to (14) via the transformation
v = µu + f . The converse needs to be clari�ed, as given v ∈ L2(U), the inverse transformation
u = µ−1(v − f) may not return a function in H1

0 (U). However, if v solves (14), then u veri�es

Tv = v − µKv = µu+ f − µKv = f.

Cancelling out the f and dividing by µ we obtain that

u = Kv.

By Theorem 6.2 we know that Kv = L−1
γ v ∈ H1

0 (U) for all v ∈ L2(U) . As a result, u solves
problem (12), and by the transformation v ↔ u problem (14) has a solution if and only if problem
(12) has a solution. Taking f = 0, we also obtain that u solves problem (13) if and only v solves
problem (15). In conclusion,

(12) is w.p ⇐⇒ (14) is w.p ⇐⇒ ker(T ) = 0 ⇐⇒ ker(L − λI) = 0,

where the second equivalence is due to the Fredholm alternative, and the third can be veri�ed by
an algebraic manipulation. This proves the �rst point.
To see the second point, note that, by de�nition of T , equation (15) has non-zero solutions if and

only if µ−1 ∈ σ(K). SinceK is compact, σ(K) is discrete and if σ(K) is in�nite, then its eigenvalues,
which we denote by

{
µ−1
n

}∞
n=1

, go to 0. Furthermore, since by Theorem 6.3 K is positive de�nite,
µn > 0 and the claim follows by the correspondence λn = µn − γ.
For the third and fourth points, we use that, as we have already proved, ker(T ) = N . Additionally,

T ∗ = (I − µK∗) = I − µ(L∗ + γ)−1,

from where

ker(T ∗) = ker(L∗ − λI) = N∗.

Applying the Fredholm alternative concludes the proof.
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Setting λ = 0 in Theorem 6.4, we recover our original problem and obtain the following corollary.

Corollary 6.5. Equation (1) is well-posed unless the homogeneous problem Lu = 0 has a non-zero

solution (that is, ker(L) ̸= 0). The space of solutions then has dimension ker(L), which is also equal

to the dimension of ker(L∗). Finally, (1) will have a solution if and only if f is orthogonal to the

kernel of L∗.

In particular, to study the existence of solutions to (1), it is enough to study the uniqueness of
solutions to (1)!

Exercise 3. In Theorem 6.4 we used that, for γ large enough, K = L−1
γ is compact. However, L−1

γ

is invertible with inverse Lγ . As a result I = Lγ ◦ L−1
γ is compact. How is this possible?

Hint. In fact, L−1
γ is only invertible as an operator from H−1(U) → H1

0 (U). However, it is not
invertible as an operator from K : L2(U) → L2(U). Given f ∈ L2(U), it is not generally possible
to �nd an u ∈ L2(U) such that Lγu = f .

Exercise 4. Where does the proof of Theorem 6.4 break down if we replace U with Rd?

Hint. Can you apply Rellich's theorem to unbounded domains? What is the spectrum of the
Laplacian on Rd?

Exercise 5. Show using Theorem 6.4 that equation (14) (the generalization of (1)) is well-posed
saved for at most a discrete set of λ.

Hint. Combine the �rst and second points of Theorem 6.4.

Exercise 6. Show the necessity of point 4 in Theorem 6.4 using only linear algebra.

Hint. Suppose Lu = λu+ f and w ∈ N∗. Then,

⟨w, f⟩ = ⟨w,Lu− λu⟩ = ⟨w,Lu⟩ − λ ⟨w, u⟩ = ⟨L∗w, u⟩ − λ ⟨w, u⟩ = 0.

7 Higher regularity

We have so far seen that, under the previous assumptions, solutions to (1) are in H1
0 (U). However,

analogously to the classical setting, we may expect that u is two degrees of regularity smoother
than f . That is that u ∈ H2(U). This improved regularity is true, but only with the caveat that
the domain U is su�ciently regular. Counterexamples with non-smooth domains exist. See [1].
We will also see how, for smoother coe�cients, we can iterate to obtain a higher regularity of u.

As a result, when the coe�cients of (1) are smooth, u will be as well, and we will obtain a classical
solution to problem (1).

7.1 Finite di�erences

In our study of regularity, we will make use of the di�erence quotients. Given a function u ∈ Lp(Rd),
we de�ne the di�erence quotients in the j-th direction as

Dh
j u :=

u(x+ hej)− u(x)

h
, ej = (0, . . . ,

(j)

1 , . . . , 0).

If u is di�erentiable, then Dh
j u → ∂ju as h → 0. The following lemma shows that, on Rd, the

di�erence quotients of u are bounded if and only if u is weakly di�erentiable.
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Lemma 7.1 (Di�erence quotients and regularity). Let p ∈ (1,+∞), and C > 0 be some constant.

Then, the following hold.

1. If u ∈ Lp(Rd) and for all h su�ciently small
∥∥∥Dh

j u
∥∥∥
Lp(Rd)

≤ C. Then u ∈ W 1,p(Rd).

2. If u ∈ W 1,p(Rd). Then,
∥∥∥Dh

j u
∥∥∥
Lp(Rd)

≤ ∥∂ju∥Lp(Rd).

Proof. We begin by proving the �rst point. Since Lp(Rd) is re�exive, every bounded sequence in
Lp(Rd) has a weakly convergent subsequence. Thus, we can �nd hn and v ∈ Lp(Rd) such that
Dhn

j u ⇀ v weakly in Lp(Rd). We want to show that v = ∂ju. To this aim, let φ ∈ C∞
c (Rd). Then,∫

Rd

vφ = lim
n→∞

∫
Rd

Dhn
j uφ = lim

n→∞

∫
Rd

u(x)
φ(x− hnej)− φ(x)

hn
dx (16)

=

∫
Rd

u(x) lim
n→∞

−D−hn
j φdx = −

∫
Rd

u∂jφ,

where in the �rst equality, we used the weak convergence of Dhn
j u to v; in the second, we separated

the integral in two and used the change of variable x → x − hnej on the �rst of the integrals
(from now on we will call this �discrete integration by parts�). The �nal equality follows from the
smoothness of φ. Since φ ∈ C∞

c (Rd) was arbitrary, we have that v = ∂ju almost everywhere. Since
u ∈ Lp(Rd), this shows that u ∈ W 1,p(Rd).
For the second point, suppose that u is smooth; then, by the fundamental theorem of calculus,

Dh
j u(x) =

∫ 1

0
∂ju(x+ thej) dt.

Taking norms and using Minkowski's integral inequality we obtain∥∥∥Dh
j u

∥∥∥
Lp(Rd)

≤
∫ 1

0
∥∂ju(·+ thej)∥Lp(Rd) dt =

∫ 1

0
∥∂ju∥Lp(Rd) dt = ∥∂ju∥Lp(Rd) ,

where in the second equality, we used the change of variables x → x− thej . We conclude by using
the density of smooth functions in W 1,p(Rd) to take limits in the above inequality.

The result can be extended to arbitrary open subsets U ⊂ Rd. In this case, one can only obtain
local regularity as the translation u(x + hej) is not well de�ned on the whole of U . We recall the
notation V ⋐ U to mean that V is a subset of U with V̄ ⊂ U .

Lemma 7.2 (Di�erence quotients and local regularity). Let p ∈ (1,+∞), C > 0 be a constant and

V ⋐ U open. Then, the following hold.

1. If u ∈ Lp(U) and for all h su�ciently small
∥∥∥Dh

j u
∥∥∥
Lp(V )

≤ C. Then, u ∈ W 1,p(V ).

2. If u ∈ W 1,p(U). Then,
∥∥∥Dh

j u
∥∥∥
Lp(V )

≤ ∥∂ju∥Lp(U) for all h < d(V, ∂U).

Exercise 7. Prove Lemma 7.2.

Hint. Adapt the proof of Lemma 7.1. Take φ ∈ C∞
c (V ) for the �rst point. For the second point,

use the local density of smooth functions in W 1,p(U).
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7.2 Regularity on Rd

By using second-order �nite di�erence, we now show that the solution to (1) is in H2(Rd) if we
impose additionally that A is continuously di�erentiable.

Theorem 7.3 (Improved regularity on Rd ). Suppose that Aij ∈ C1(Rd) is elliptic and that bi ∈
L∞(Rd), c ∈ L∞(Rd) . Then, if u ∈ H1(Rd) solves Lu = f , it holds that u ∈ H2(Rd) with

∥u∥H2(Rd) ≲A,b,c ∥f∥L2(Rd) + ∥u∥L2(Rd) .

Proof. The idea is to use di�erence quotients to approximate the second derivative of u

v := −D−h
j Dh

j u =
u(x+ hek)− 2u(x) + u(x− hek)

h2
.

Since v ∈ H1(U), we can substitute v into the weak formulation (4), do a discrete integration by

parts and use Cauchy's inequality to show that
∥∥∥Dh

j∇u
∥∥∥
L2(Rd)

is bounded. Using Lemma 7.1, we

will then conclude that u ∈ H2(Rd) and �nish o� the proof. We now put this plan into action.
From (4), we have that ∫

Rd

A∇u · ∇v =

∫
Rd

(f − b · ∇u− cu)v. (17)

Applying a discrete integration by parts to the left-hand side of (17) as in (16), we obtain∫
Rd

A∇u · ∇v =

∫
Rd

Dh
j (A∇u) · (Dh

j∇u) =

∫
Rd

AhDh
j∇u ·Dh

j∇u+

∫
Rd

(Dh
jA)∇u ·Dh

j∇u,

where in the last equality, we used the notation Ah(x) := A(x + h) and the product rule for
di�erence quotients (this can be checked by basic algebra). Using the ellipticity of A and Cauchy's
inequality (6) to put ε on the higher order negative term Dh

j∇u we obtain that for some constant
C ∫

Rd

A∇u · ∇v ≥ α
∥∥∥Dh

j∇u
∥∥∥2
L2(Rd)

− C

ε
∥∇u∥2L2(Rd) − ε

∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

, (18)

where we used that, since A ∈ C1(Rd), the term Dh
jA is bounded. Setting ε = α/3 in (18) we

obtain that ∫
Rd

A∇u · ∇v ≥ 2α

3

∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

− 3C

α
∥∇u∥2L2(Rd) . (19)

We now estimate the right-hand side of (17). We have that, by Cauchy's inequality and the second
point of Lemma 7.1,∫

Rd

(f − b · ∇u− cu)v ≤ C

ε

(
∥f∥2L2(Rd) + ∥∇u∥2L2(Rd) + ∥u∥2L2(Rd)

)
+ ε

∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

.

Once more, setting ε = α/3 gives∫
Rd

(f − b · ∇u− cu)v ≤ 3C

α

(
∥f∥2L2(Rd) + ∥∇u∥2L2(Rd) + ∥u∥2L2(Rd)

)
+

α

3

∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

. (20)

Using (19) and (20) in (17) shows that, for some constant C̃,∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

≤ C̃

α2

(
∥f∥2L2(Rd) + ∥∇u∥2L2(Rd) + ∥u∥2L2(Rd)

)
. (21)
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Equation (21) is almost the desired result save the presence of ∥∇u∥L2(Rd) on the right-hand side.
However, by setting v = u in (17) and once more using Cauchy's inequality, we obtain that

∥∇u∥2L2(Rd) ≲A,b,c ∥f∥2L2(Rd) + ∥u∥2L2(Rd) . (22)

Combining (21) and (22) gives the bound∥∥∥Dh
j∇u

∥∥∥2
L2(Rd)

≲A,b,c ∥f∥2L2(Rd) + ∥u∥2L2(Rd) .

Applying the �rst point of Lemma 7.1 and taking square roots concludes the proof.

By induction, we can obtain higher-order regularity. For notational convenience, we write

Xk := Hk(Rd) ∩W k,∞(Rd).

This space corresponds to functions that are k times weakly di�erentiable with bounded and square-
integrable derivatives up to order k.

Theorem 7.4 (Regularity on Rd ). Suppose that L is elliptic and that its coe�cients verify

Aij ∈ C1(Rd) ∩Xk+1, bi, c ∈ Xk, f ∈ Hk(Rd).

Then, if u ∈ H1(Rd) solves Lu = f , it holds that u ∈ Hk+2(Rd) with

∥u∥Hk+2(Rd) ≲A,b,c ∥f∥Hk(Rd) + ∥u∥L2(Rd) .

Proof. The theorem holds for k = 0 by Theorem 7.3. Suppose by hypothesis of induction that the
theorem holds up to order k. Let

Aij ∈ C1(Rd) ∩Xk+2, bi, c ∈ Xk+1, f ∈ Hk+1(Rd). (23)

Then, by the induction hypothesis u ∈ Hk+2(Rd) with

∥u∥Hk+2(U) ≲A,b,c ∥f∥Hk(Rd) + ∥u∥L2(Rd) . (24)

Consider a multi-index α with |α| = k+1 and ṽ ∈ C∞
c (Rd). Then, substituting v := (−1)|α|Dαṽ in

the weak formulation (4) we obtain by integrating by parts that∫
Rd

Dα(A∇u) · ∇ṽ +

∫
Rd

Dα(b∇u) · ∇ṽ +

∫
Rd

Dα(cu)ṽ =

∫
Rd

Dαfṽ.

Let us write ũ := Dαu. Applying the chain rule repeatedly and keeping only the derivatives of order
k + 3 of u on the left-hand side to obtain

B(ũ, ṽ) =

∫
Rd

A∇Dαu · ∇ṽ +

∫
Rd

b∇Dαu · ∇ṽ +

∫
Rd

cDαuṽ =

∫
Rd

f̃ ṽ = (f̃ , ṽ), (25)

where f̃ involves only Dαf as well as sums and products of derivatives up to order k + 2 of u,A
and up to order k + 1 of b and c. As a result, by the conditions on the coe�cients in (23) and the
induction hypothesis (24), we have that f̃ ∈ L2(Rd) with

∥f̃∥L2(Rd) ≲A,b,c ∥f∥Hk+1(Rd) + ∥u∥L2(Rd) . (26)

By equation (25), ũ is a solution to Lũ = f̃ and applying the case k = 0 (Theorem 7.3) together
with (24) and (26) shows that ũ ∈ H2(Rd) with

∥ũ∥H2(Rd) ≲A,b,c ∥f̃∥L2(Rd) + ∥ũ∥L2(Rd) ≲A,b,c ∥f∥Hk+1(Rd) + ∥u∥L2(Rd) .

Since α was any coe�cient of order k + 1, we deduce that u ∈ Hk+3(Rd) with

∥u∥Hk+3(Rd) ≲A,b,c ∥f∥Hk+1(Rd) + ∥u∥L2(Rd) .

The equation above is the hypothesis of induction for k + 1, and the proof is complete.

10



Iterating the above theorem, we obtain that if the coe�cients of L are smooth, then the solution
to (1) is smooth as well. And u is a classical solution to (1).

Theorem 7.5 (In�nite regularity on Rd). Let Aij , bi, c ∈ C∞(Rd) with A elliptic. Then, if u ∈
H1(U) solves Lu = f , it holds that u ∈ C∞(Rd)

Proof. By Theorem 7.7, we have that u ∈ Hk(Rd) for all k ∈ N. By Sobolev embeddings we deduce
that u ∈ C∞(Rd).

At �rst sight, it may seem as if the above results can be extended to solutions of (1) on U ⊊ Rd

with the following reasoning. However, there is a mistake in the reasoning. Can you spot it?

Exercise 8. The following argument is false. Show the �aw in the reasoning.
Let U ⊂ Rd be any open subset. Suppose that Aij ∈ C1(U) is elliptic and that bi, c ∈ L∞(U) .

Let u ∈ H1
0 (U) solve Lu = f . The extension ũ to Rd by zero of u is in H1(Rd). The coe�cients

b, c can likewise be extended by 0 to functions b̃, c̃ ∈ L∞(Rd). Likewise for f to f̃ ∈ L2(Rd) and by
Assumption, A is the restriction to U of some function Ã ∈ C1(Rd). We have that

L̃ũ := −∇ · (Ã∇ũ) + b̃ · ∇ũ+ c̃ũ = f̃ . (27)

As a result by Theorem 7.3 it holds that ũ ∈ H2(Rd) with

∥u∥H2(U) = ∥ũ∥H2(Rd) ≲A,b,c ∥f∥L2(Rd) + ∥u∥L2(Rd) .

Hint. Are you sure that ũ solves (27)? Consider for example the case A = I, b = c = 0. For ũ to
solve (27) it is necessary that for all φ ∈ C∞

c (Rd)∫
Rd

∇ũ · ∇φ =

∫
Rd

f̃φ.

That is, that ∫
U
∇u · ∇φ =

∫
U
fφ, ∀φ ∈ C∞(Rd).

Whereas we only know that u solves (4). That is,∫
U
∇u · ∇φ =

∫
U
fφ, ∀φ ∈ C∞

c (U).

This equality does not imply the previous one. The problem is that extension by zero does not
respect the second derivative of functions in H1

0 (Rd). For example, if u ∈ H2(U) ∩ H1
0 (U) we do

not necessarily have that ũ is in H2(Rd). Consider for example U = (−1, 1) and u(x) = 1 − 1
2x

2.
Then, u solves our equation (1) with f = 1 and, given φ ∈ C∞

c (R),∫
R
ũ′φ′ = −

∫ 1

−1
xφ′ = −(φ(1)− φ(−1)) +

∫ 1

−1
φ ̸=

∫ 1

−1
φ =

∫
R
f̃φ.

However, ũ is not in H2(R) as ũ′′ = δ−1 + δ1 − 2 · 1U ∈ D′(R).
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7.3 Interior regularity

We have just seen that a direct generalization of Theorem 7.3 to unbounded domains is not possible
using an extension by zero. However, by adapting the proof of Theorem 7.3, one can prove the
analogous result.
In this case, however, one has to be careful as the di�erence quotients may not be well de�ned at

the boundary. As a result, it is necessary to work locally and use a bump function. This makes the
proofs a bit messier, though the idea is the same. We sketch the proof, which can also be found in
[2] page 326

Theorem 7.6 (Improved interior regularity). Let u ∈ H1(U) be a solution to Lu = f where

f ∈ L2(U), A ∈ C1(U) is elliptic and vi, c ∈ L∞(U). Then, u ∈ H2
loc(U) and

∥u∥H2
loc(U) ≲A,b,c ∥f∥L2(U) + ∥u∥L2(U) .

Note that we do not require u to be in H1
0 (U).

Proof. Let V ⋐ U be open and let η be a bump function supported on W and identically equal to
1 on V . For h small we have that

v = −Dh
j η

2Dh
j u ∈ H2(V ), j = 1, . . . , d. (28)

Proceeding as in the proof of Theorem 7.3, we obtain that∫
V

∣∣∣Dh
j∇u

∣∣∣2 dx ≤
∫
U
η2

∣∣∣Dh
j∇u

∣∣∣2 dx ≲ C

∫
U
f2 + u2 + |∇u|2.

Applying the �rst point of Lemma 7.2 we obtain that u ∈ H2
loc(U) with

∥u∥H2
loc(U) ≲A,b,c ∥f∥L2(U) + ∥u∥H1(U) . (29)

Analogously, we also obtain by setting v = η2u that∫
V
|∇u|2 ≤

∫
U
η2|∇u|2 ≲ ∥f∥L2(U) + ∥u∥H1(U) . (30)

Combining (29) and (30), we obtain the desired result.

As we did in the case U = Rd, we can obtain higher-order regularity by induction. As before, we
now write

Xk(U) := Hk(U) ∩W k,∞(U).

In the case that U is bounded then Xk(U) = W k,∞(U).

Theorem 7.7 (Interior regularity). Suppose that L is elliptic and that its coe�cients verify

Aij ∈ C1(U) ∩Xk+1(U), bi, c ∈ Xk(U), f ∈ Hk(U).

Then, if u ∈ H1(U) solves Lu = f , it holds that u ∈ Hk+2
loc (U) with

∥u∥Hk+2
loc (U) ≲A,b,c ∥f∥Hk(U) + ∥u∥L2(U) .

Exercise 9. Prove Theorem 7.7.
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Hint. The theorem holds for k = 0 by Theorem 7.6. Suppose by hypothesis of induction that the
theorem holds up to order k. Let

Aij ∈ C1(U) ∩Xk+2(U), bi, c ∈ Xk+1(U), f ∈ Hk+1(U). (31)

Then, by the induction hypothesis u ∈ Hk+2
loc (U) with

∥u∥Hk+2
loc (U) ≲A,b,c ∥f∥Hk(U) + ∥u∥L2(U) . (32)

Let V ⋐ U be open, consider a multi-index α with |α| = k+1 and ṽ ∈ C∞
c (V ). Then, substituting

v := (−1)|α|Dαṽ in the weak formulation (4) we obtain by integrating by parts that∫
V
Dα(A∇u) · ∇ṽ +

∫
V
Dα(b∇u) · ∇ṽ +

∫
V
(Dαcu)ṽ =

∫
V
Dαfṽ.

Let us write ũ := Dαu. Applying the chain rule repeatedly and keeping only the derivatives of order
k + 2 of u on the left-hand side to obtain

B(ũ, ṽ) =

∫
V
A∇Dαu · ∇ṽ +

∫
V
b∇Dαu · ∇ṽ +

∫
V
cDαuṽ =

∫
V
f̃ ṽ = (f̃ , ṽ), (33)

where f̃ involves only Dαf as well as sums and products of derivatives up to order k + 2 of u,A
and up to order k + 1 of b and c. As a result, by the conditions on the coe�cients in (31) and the
induction hypothesis (32), we have that f̃ ∈ L2(V ) with

∥f̃∥L2(V ) ≲A,b,c ∥f∥Hk+1(U) + ∥u∥L2(U) . (34)

By equation (33), ũ is a solution to Lũ = f̃ on V and applying (32) and (34) shows that ũ ∈ H2
loc(V )

with

∥ũ∥H2
loc(V ) ≲A,b,c ∥f̃∥L2(V ) + ∥ũ∥L2(V ) ≲A,b,c ∥f∥Hk+1(U) + ∥u∥L2(U) .

Since α was any coe�cient of order k + 1, we deduce that u ∈ Hk+3(V ) with

∥u∥Hk+3
loc (V ) ≲A,b,c ∥f∥Hk+1(U) + ∥u∥L2(U) .

Since V ⋐ U is any, we deduce that

∥u∥Hk+3
loc (U) ≲A,b,c ∥f∥Hk+1(U) + ∥u∥L2(U) .

The above is the hypothesis of induction for k + 1 and completes the proof.

Using Sobolev embeddings we obtain once more in�nite regularity for smooth coe�cients.

Theorem 7.8 (In�nite interior regularity). Let Aij , bi, c ∈ C∞(U) with A elliptic. Then, if u ∈
H1(U) solves Lu = f , it holds that u ∈ C∞

loc(U).

Proof. By Theorem 7.7, we have that u ∈ Hk(U) for all k ∈ N. By Sobolev embeddings we have
that u ∈ C∞

loc(U).
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7.4 Regularity at the boundary

Regularity at the boundary can also be obtained; however, in this case, it is necessary to impose
the boundary condition u|∂Ω = 0. We can then work on bounded smooth domains Ω by reasoning
�rst on B(0, 1) ∩Rd

+ and then using a �nite covering of Ω and a change of coordinates to translate
these results back to Ω.
We summarize and sketch the proofs of the main results, which are analogous to the interior

regularity results of Theorems 7.6, 7.7 and 7.8.The details For the partition to be �nite, it is further
necessary for Ω to be bounded. We sketch the proof which can be found in [2] pages 334− 343 and
[3] pages 183-188.

Theorem 7.9 (Improved regularity at the boundary). Let Ω ⊂ Rd be bounded with ∂Ω ∈ C2.

Let Aij ∈ C1(Ω) be elliptic and bi, c ∈ L∞(Ω). Let u ∈ H1
0 (Ω) be a weak solution to (1). Then,

u ∈ H2(Ω) with

∥u∥H2(Ω) ≲A,b,c,Ω ∥f∥L2(Ω) + ∥u∥L2(Ω) .

Proof. Since ∂Ω is of class C2, given x0 ∈ ∂Ω there exists R > 0 and a twice di�erentiable di�eo-
morphism

φ : BR(x0)
∼−→ φ(BR(x0)) ⊂ Rd,

that maps the interior of BR(x0) to the interior of Rd
+ and the boundary to the boundary. That is,

Ω̃ := φ(BR(x0) ∩ Ω) = φ(BR(x0)) ∩ {xd > 0}

∂Ω̃0 := φ(BR(x0) ∩ ∂Ω) = φ(BR(x0)) ∩ {xd = 0} .

Let us de�ne ũ := u ◦ φ−1 on Ω̃. Then, ũ veri�es a PDE of the same form as our original PDE (1).
Where now the boundary condition holds only on the straight part straight part ∂Ω̃0.{

L̃ũ = f̃ in Ω̃

ũ = 0 on ∂Ω̃0.

Since our boundary condition does not hold on the curved part of the boundary ∂Ω̃1 := ∂Ω̃ \ ∂Ω̃0,
to integrate by parts we need to introduce a bump function η which is zero on ∂Ω̃1.
Let 0 < r < R and de�ne Ṽ := φ(Br(x0) ∩ Ω). Now choose a bump function η ∈ C∞

c (Rd) with
compact support in φ(BR(x0)) (in particular, η = 0 on ∂Ω̃1) and identically equal to 1 on Ṽ . Then,
for small h, we de�ne as in (28) the function

ṽ := −Dh
j η

2Dh
j ũ ∈ H2

0 (Ω̃) j = 1, . . . , d− 1.

Here, the increments are only well de�ned for j ̸= d. Proceeding as in the proof of Theorem 7.6, we
obtain that, for i, j = 1, . . . , d− 1,

∥∂i∂j ṽ∥L2(Ṽ )
≲A,b,c ∥f̃∥L2(Ω̃)

+ ∥ũ∥
L2(Ω̃)

≲A,b,c,φ ∥f∥L2(Ω) + ∥u∥L2(Ω) . (35)

Since ũ ∈ H2
loc(Ṽ ) by Theorem 7.6, we have that the equality L̃ũ = f holds almost everywhere in

Ṽ . As a result,

Add∂d∂dũ = F̃ ,

14



where F̃ only involves derivatives up to order 1 in xd of u and up to order 2 in x1, . . . , xd−1 of u.
Using the ellipticity of A with ξ = (0, . . . , 0, 1) in (3) we obtain that, almost everywhere in Ṽ ,

∂d∂dũ ≲ F̃ .

Taking norms and using (35) gives

∥ũ∥
H2(Ṽ )

≲A,b,c,φ ∥f∥L2(Ω) + ∥u∥L2(Ω) .

If we write Vx0 := φ−1(Ṽ ), we have that u ∈ H2(Vx0) with

∥u∥H2(Vx0 )
≲A,b,c,φ ∥f∥L2(Ω) + ∥u∥L2(Ω) .

Since ∂Ω is compact, we can cover Ω with a �nite number of such sets Vx0 plus some open W ⋐ Ω.
We conclude the proof by using the interior regularity result of Theorem 7.6 to bound ∥u∥H2(W ).

The following can now be proved by induction, just as in Theorems 7.6 and 7.7.

Theorem 7.10 (Higher regularity at the boundary). Let Ω ⊂ Rd be bounded with ∂Ω ∈ Ck+2. Let

Aij ∈ C1(Ω) ∩W k,∞(Ω) be elliptic and bi, c ∈ Hk(Ω) ∩W k,∞(Ω) and f ∈ Hk(Ω) . Let u ∈ H1
0 (Ω)

be a weak solution to (1). Then, u ∈ Hk+2(Ω) with

∥u∥Hk+2(Ω) ≲A,b,c,Ω ∥f∥Hk(Ω) + ∥u∥L2(Ω) .

Once more, by Sobolev embeddings we obtain in�nite regularity at the boundary.

Theorem 7.11 (In�nite regularity at the boundary). Let Ω ⊂ Rd be bounded of class C∞. Let

Aij , bi, c ∈ C∞(Ω) with A elliptic. Let u ∈ H1
0 (Ω) be a weak solution to (1). Then, u ∈ C∞(Ω).

8 Other boundary conditions

So far, we have only worked with homogeneous Dirichlet boundary conditions. However, it often
makes more sense to work with the non-homogeneous case. We also show how to extend the results
to Neumann or Robin boundary conditions. In this section, we will see how to adapt the results of
the previous section to these cases.

8.1 Non-homogeneous Dirichlet boundary conditions

Consider the problem with non-homogeneous Dirichlet boundary conditions on a domain Ω with
with Lipschitz boundary, written ∂Ω ∈ C0,1{

Lu = f in Ω,

u = g on ∂Ω.
(36)

For (36) to hold, it is necessary that g is the restriction to ∂Ω of some function g̃ called a lifting of
g̃ onto Ω (in particular it is the restriction of u to ∂Ω ). That is, g̃ ∈ Tr(Hm(Ω)) where Tr is the
trace operator and m is the desired regularity of u. By theory of the trace operator, we know that
this is equivalent to g ∈ Hm−1/2(∂Ω). Then, by forming w := u − g̃ we obtain that w solves the
homogeneous Dirichlet problem {

Lw = f̃ in Ω,

w = 0 on ∂Ω,
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where

f̃ := f − Lg̃ = f −∇ · (A∇g̃)− b · ∇g̃ − cg̃ ∈ H−1(Ω).

The transformation u ↔ w maintains regularity up to order m for g ∈ Hm−1/2(Ω) and as a result,
we can apply all the previous results on well-posedness, the spectrum of L and regularity to the
problem (36). For example, the following holds.

Theorem 8.1. Let Ω be a bounded domain with C0,1 boundary then

1. The non-homogeneous Dirichlet problem (36) is well-posed for g ∈ H1/2(∂Ω) if and only if the

homogeneous problem (1) is well posed.

2. The Fredholm alternative (Theorem 6.4) holds where we replace H1
0 (Ω) by the subspace of

H1(Ω) whose trace is equal to g.

3. If g ∈ Hk+3/2(∂Ω), then u ∈ Hk+2(Ω) under the same conditions of Theorem 7.10 on Ω and

the coe�cients of L.

8.2 Neumann and Robin boundary conditions

Consider a bounded domain Ω with boundary of type C0,1 (Lipschitz boundary). The elliptic Robin
boundary condition problem is {

Lu = f in Ω,

A∇u · n = g + σu on ∂Ω,
. (37)

The Neumann boundary condition problem is the case where σ = 0. An integration by parts shows
that the weak formulation of (37) is

B(u, v) :=

∫
Ω
A∇u · ∇v +

∫
Ω
b∇u · ∇v +

∫
Ω
cuv +

∫
∂Ω

σuv =

∫
Ω
fv +

∫
∂Ω

gv =: ℓ(v). (38)

For the weak form to be well de�ned we need for f to be in the dual space H1(Ω)′ (this is di�erent
fromH−1(Ω) := H1(Ω)′)and g ∈ H−1/2(∂Ω) . A similar reasoning to previously shows the following.

Theorem 8.2. Let Ω be a bounded domain, f ∈ H1(Ω)′, g ∈ H−1/2(∂Ω) and σ ∈ L∞(∂Ω).

1. Let b = 0 and c, σ ≥ 0. Suppose both c, σ are not identically zero. Then the Robin boundary

condition problem (38) has a unique solution u ∈ H1(Ω).

2. The well posedness of the modi�ed problem Lu + λu = f and the Fredholm alternative of

Theorem 6.3 and Theorem 6.4 hold swapping everywhere H1
0 (U) with H1(Ω) and H−1(Ω)

with H1(Ω)′.

3. Let ∂Ω ∈ Ck+2. If u solves (37) and

Aij ∈ C1(Ω) ∩W k+1,∞(Ω), bi, c ∈ W k,∞(Ω), σ ∈ W k+1,∞(∂Ω)

f ∈ Hk(Ω), g ∈ Hk+1/2(∂Ω).

Then, u ∈ Hk+2(Ω) with

∥u∥Hk+2(Ω) ≲A,b,c,σ,Ω ∥f∥Hk(Ω) + ∥g∥Hk+1/2(∂Ω) + ∥u∥L2(Ω) .
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Proof. Under the conditions of Point 1, the bilinear form B is coercive (this can be show by a proof
by contradiction see for example [4] page 146). As a result, the Lax-Milgram theorem implies the
existence of a unique solution u ∈ H1(Ω).
The second point is a repetition of what was already shown for the homogeneous Dirichlet problem,

for large λ, the modi�ed bilinear form Bλ si coercive and the Fredholm alternative holds.
The third point can be seen by �rst repeating the proof of Theorem 7.9 where with the notation

of this theorem, now ũ solves {
Lũ = f̃ in Ω̃,

A∇ũ · n = g̃ + σ̃ũ on ∂Ω̃0.

As a result, integrating by parts against ṽ := D−h
j η2Dh

j ũ is valid for small h and j ̸= d and gives∫
Ṽ
Ã∇ũ · ∇ṽ +

∫
Ṽ
b̃∇ũ · ∇ṽ +

∫
Ṽ
c̃ũṽ +

∫
∂Ω̃0

σ̃ũṽ =

∫
Ṽ
f̃ ṽ +

∫
∂Ω̃0

g̃ṽ.

Using a discrete integration by parts, Cauchy's inequality and the regularity of the coe�cients, we
obtain the bound

∥u∥H2(Vx0 )
≲ ∥u∥

H2(Ṽ )
≲ ∥f∥L2(Ω) + ∥g∥H−1/2(∂Ω) + ∥u∥L2(Ω) .

Using a covering of Ω gives u ∈ H2(Ω) and the result follows by induction as in Theorem 7.10.

8.2.1 The Dirichlet problem with Neumann boundary conditions

As an example of some interest, in the simple case where A is the identity and b, c, g, are zero (the
Poisson equation with Neumann boundary conditions), the weak formulation is∫

Ω
∇u · ∇v =

∫
Ω
fv, ∀v ∈ H1(Ω)

Note carefully that B is not coercive on H1(Ω) as Poincaré's inequality does not hold for Neumann
boundary conditions.

Exercise 10. Show that L = ∆ has the eigenvalue λ = 0. Show that, if Ω decomposes into n
connected components Ω1, ...,Ωn, then the eigenspace of λ = 0 is n-dimensional and spanned by
the indicator functions 1Ω1 , ..., 1Ωn . In particular, the eigenspace of λ = 0 is one-dimensional if Ω
is connected.

Hint. Since Ω is bounded 1Ωi ∈ H1(Ω) and ∆1Ωi = 0. Let u ∈ H1(Ω) be an eigenfunction of ∆
with eigenvalue 0. Then, by the weak formulation of the Laplacian, we have that∫

Ω
|∇u|2 = 0.

That is, ∇u = 0 almost everywhere. By one dimensional calculus we know that u is constant on
each connected component and the result follows.

Exercise 11. Let Ω decompose into n connected components Ω1, ...,Ωn. Show that, for f ∈ L2(Ω),
the Laplace equation ∆u = f has a weak solution u ∈ H1(Ω) if and only if∫

Ωi

f = 0, ∀i = 1, ..., n.

Furthermore, show that the solution is unique up to a constant on each connected component Ωi.

Hint. Apply the �nal point of the Fredholm alternative (Theorem 6.4) together with Exercise 10.
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