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1 Three point summary

� A parabolic PDE describes how a function evolves over time under the in�uence of an elliptic
operator. Unlike their elliptic counterparts, parabolic PDEs are typically well-posed. For
well-behaved coe�cients, a unique solution always exists and depends continuously on the
initial data.

� Solutions to parabolic PDEs can be viewed as functions mapping an instant in time to a
function in a Banach space. From this viewpoint, the PDE becomes an in�nite dimensional
ODE. The Galerkin method is a powerful tool to prove the well-posedness of the problem
and approximate its solutions using a �nite-dimensional ODE that approximates the original
in�nite-dimensional problem.

� The solution is smoother than the initial data and will always be at least continuous in time
and (weakly) di�erentiable in space. If the coe�cients of the PDE are smooth, the solution
will be smooth as well.

2 Notation

� As in the rest of the series, we will let U denote an arbitrary open subset of Rd. That is, it
may be bounded or unbounded with no conditions on the regularity of the boundary (if it
exists). To denote a smooth domain, we will use the notation Ω.

� We will be working with functions of time and space u(t, x) de�ned on some time interval
I = [0, T ] and spatial domain U . We will denote by u(t) the function u(t, ·) : U → R.

� Given a topological vector space X with dual X ′ and x ∈ X,w ∈ X ′ we write the duality

pairing

(x,w) := w(x).

3 Introduction

In the previous post of this series, we studied the well-posedness and regularity of solutions to an
elliptic PDE of the form {

Lu = f in U

u = 0 on ∂U
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where the second order di�erential operator L was given in divergence form as

−∇ · (A∇u) +∇ · (bu) + cu. (1)

and veri�ed the ellipticity condition. After de�ning the weak formulation of the problem, we natu-
rally obtained the function spaces we were interested in and, under some restrictions on the coe�-
cients, proved the existence and uniqueness of solutions. When solutions were not guaranteed to be
unique, we studied the spectrum of L, and in all cases, we showed that the solution had improved
regularity as compared to the coe�cients of the PDE.
In this post we now look to mimic the previous analysis but for parabolic PDEs. We de�ne the

operator

Lu := −∇ · (A∇u) + b · ∇u+ cu, (2)

(by Leibnit'z rule one can move between (1) and (2)) and consider the parabolic PDE
∂tu+ Lu = f in I × U

u(0) = g on U

u = 0 on I × ∂U,

(3)

where I = [0, T ] is the time interval of interest and 0 < T < ∞. Here, we need an extra initial
condition u(0) = g that tells us the initial state of the system. The operator L has the same form
as in (2), however now the coe�cients A(t,x), b(t,x), c(t,x) are allowed to depend on both time
and space. In the next sections, we will de�ne the weak formulation of the problem and study the
well-posedness and regularity of solutions. As we will see, within the functions spaces of interest, (3)
is always well-posed. This is in contrast to elliptic PDEs, where well-posedness was not guaranteed
in general.

4 Weak formulation

4.1 Banach valued functions

To de�ne weak solutions to (3), it is convenient to switch our viewpoint. Instead of thinking of u as
a real-valued function of time and space, we think of it as a Banach space valued function of time

u : I → X, t 7→ u(t),

where X is some Banach space of function on U (such as L2(U), H1
0 (U), ...) and we use the notation

u(t)(x) := u(t, x). This way of viewing u is an essential tool in the theory of evolution PDEs, which
transform the PDE (3) into an in�nite dimensional linear ODE.
To be able to proceed, we need to de�ne an integral on functions valued in Banach spaces. This

integral is called the Bochner integral. To brie�y summarize, given a separable Banach space X
and p ∈ [1,∞] we de�ne

Lp(I → X) =
{
f : I → X : f measurable and ∥f∥Lp(I→X) < ∞

}
, (4)

where functions equal almost everywhere are identi�ed, and the norm is de�ned as

∥f∥Lp(I,X) :=

(∫
I
∥f(t)∥pX dt

)1/p

, p ∈ [1,∞),

∥f∥L∞(I→X) := inf{r > 0 : µ(∥f∥ > r) = 0}.
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Then, hte spaces Lp(I → X) are Banach spaces and functions f in L1(I → X) have a well de�ned
Bochner integral ∫

I
f(t) dt ∈ X.

This integral generalizes the Lebesgue integral and is also constructed by approximating the inte-
grable functions by simple functions of the form

∑n
i=1 1Aixi where Ai are sets with �nite measure

and xi ∈ X.
Many familiar properties carry over to the Bochner integral. Namely, integration is a continuous

linear operator on L1(I → X). Furthermore, given p ∈ [1,∞) and v ∈ Lp′(I → X ′), where p′ is the
conjugate exponent of p, we can de�ne the duality pairing

(u, v) :=

∫
I
(u(t), v(t))X dt, u ∈ Lp(I → X).

With this identi�cation, the dual of Lp(I → X) is equal to Lp′(I → X ′) . We will also use that if
ϕn ∈ C∞(I) is a smooth approximation of unity then, for p ∈ [1,∞)

lim
n→∞

u ∗ ϕn → u in Lp(I → X), lim
n→∞

u ∗ ϕn = u almost everywhere . (5)

To make the notation more readable we will use the convention of denoting function spaces in
temporal and spatial domains by the subindexes t, x. For example, we write

L2
tH

1
0,x := L2(I → H1

0 (U)), L2
tH

−1
x := L2(I → H−1(U))

L∞
t,x := L∞(I × U), L2

x := L2(U).

Due to the previous discussion we have that

L2
tH

1
0,x(U)′ = L2

tH
−1
x (U). (6)

A tricky aspect of PDE is �guring out what space X should be? The choice of X needs to be
guided by what bounds one can obtain in the norm of X. As we will see when we derive energy
bounds for u, the space X = H1

0 (U) is the natural Banach space to consider in this setting.

4.2 Weak solutions

As may have become familiar at this point of the series, to derive the weak formulation of our
problem (3), we suppose that u is smooth, multiply the equation by a test function v ∈ C∞

c (I ×U)
and integrate over I × U . We obtain that, in addition to the condition u(0) = g∫

I

∫
U
u′v +

∫
I

∫
U
(A∇u) · ∇v +

∫
I

∫
U
(b · ∇u)v +

∫
I

∫
U
cuv =

∫
I

∫
U
fv, (7)

where for brevity in the notation we omitted the customary dx dt in the integrals and wrote u′ = ∂tu.
Equivalently, with the notation for the duality pairing, we can write (7) and the boundary condition
as

(v, u′) + (∇v,A∇u) + (v, b∇u) + (v, cu) = (v, f), u(0) = g. (8)

For the following theory we need some assumption on the coe�cients and the data. Firstly, we give
the following de�nition
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De�nition 4.1. We say that A is parabolic if there exists a constant α > 0 such that

(A(t,x)ξ) · ξ ≥ α |ξ|2 ∀(t,x) ∈ I × Ω, ξ ∈ Rd. (9)

This is the parabolic analog of the ellipticity condition we required in the previous post. Phys-
ically speaking, it guarantees that di�usion does not go to zero and occurs from regions of larger
concentration to lower concentration.

Assumption 1. We assume that A is parabolic and for all i, j = 1, . . . , d

Aij , bi, c ∈ L∞
t,x, f ∈ L2

tH
−1
x , g ∈ L2

x.

The boundedness of A, b, c is expedient so that the integrals in (8) are well de�ned.
For (8) to make sense and verify the boundary condition u = 0 on ∂U , we give the following

de�nition.

De�nition 4.2 (Weak solution). Under Assumption 1, we say that u is a weak solution of the
parabolic problem (3) if

u ∈ L2
tH

1
0,x, u′ ∈ L2

tH
−1
x ,

and (8) is veri�ed for all v ∈ L2
tH

1
0,x.

With the above de�nition, all the terms (8) are well de�ned, where the duality pairing is to
be interpreted as the one given by (6). Furthermore, the boundary condition u = 0 on ∂U is
automatically satis�ed as u(t) ∈ H1

0 (U) for almost all t and a quick sanity check shows that the
various functional spaces in de�nition 4.2 are logical as if u ∈ L2

tH
1
0,x then Lu ∈ L2

tH
−1
x and from

(3) we should also have u′ ∈ L2
tH

−1
x . It only remains to justify that u(0) is well-de�ned. This is

proved in the following lemma.

Lemma 4.3. Let u ∈ L2
tH

1
x with u′ ∈ LtH

−1
x . Then, u ∈ CtL

2
x with

∥u∥CtL2
x
≲ ∥u(0)∥L2

x
+ ∥u∥L2

tH
1
x
+
∥∥u′∥∥

LtH
−1
x

.

Proof. Let ϕn ∈ C∞
c (I) be a smooth approximation to the identity and de�ne un(t) := (u ∗ ϕn)(t)

(we use the convention of extending u by zero outside of I so the convolution is well de�ned). Then,
un ∈ C∞

t L2
x converges almost everywhere and in L2

tH
1
x to u and u′n converges in L2

tH
−1
x to u′ (see

(5)).Given n,m > 0 write wn,m := un − um. We have that,(
∥un(t)∥2L2

x

)′
= 2

〈
un(t), u

′
n(t)

〉
L2
x
.

As a result, by the fundamental theorem of calculus, given any s, t ∈ I,

∥wn,m(t)∥2L2
x
= ∥wn,m(s)∥2L2

x
+ 2

∫ t

s

〈
wn,m(r), w′

n,m(r)
〉
L2
x
dr.

Taking any s such that un(s) → u(s) and the max over t gives

lim sup
n,m→∞

max
t∈I

∥wn,m(t)∥2L2
x
≲ 0 + lim sup

n,m→∞

∫
I
∥wn,m(r)∥2H1

x
dr +

∫
I

∥∥w′
n,m(r)

∥∥2
H−1

x
dr = 0, (10)

where in the last equality we used that un, u
′
n converge to u, u′ in the respective norms.

Equation (10) shows that un is a Cauchy sequence in the Banach space CtL
2
x and, as a result,

converges to a continuous function v in CtL
2
x. Since it also converges almost everywhere to u, we

must have that v = u. This shows that u ∈ CtL
2
x.
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To prove the bound of the theorem, suppose �rst that u is smooth in t. Then, by the fundamental
theorem of calculus and the de�nition of the dual norm

∥u(t)∥2L2
x
= ∥u(0)∥2L2

x
+ 2

∫
I

〈
u′(r), u(r)

〉
L2
x
dr

≤ ∥u(0)∥2L2
x
+ 2

∫
I

∥∥u′(r)∥∥
L2
tH

−1
x

∥u(r)∥L2
tH

1
x
dr.

The bound follows Cauchy-Schwartz, and the non-smooth case follows by approximating u by
smooth un = u ∗ phin.

5 Well-posedness of the problem

We now aim to show that the problem (3), or more precisely its weak formulation (8), is well-posed.

5.1 A naive approach

As we have discussed in the previous section, equation (3) can be seen as an in�nite dimensional
linear ODE. As a result, we could hope that the theory of linear ODE will give us a solution.
Working directly we would write F (u) := −Lu+ f and the equation (3) as

u′(t) = F (u(t)), u(0) = g. (11)

Then, writing once more X = H1
0 (U), we could try to emulate Picard's theorem for scalar-valued

ODEs to obtain a �xed point for

Φ : C([0, ϵ] → X) → C([0, ϵ] → X), u 7→ Φ(u)(t) := g +

∫
I
F (u(s)) ds.

The only problem with this is that F does not map X to X. As a result, the mapping Φ is not well
de�ned. If the initial data is smooth, we could hope to set X = C∞

c (U), and then F would map X
to X. However, C∞

c (U) is not a Banach space, so further modi�cations would be required. As a
result, we need a more re�ned approach. In the next section, we use the Galerkin method to prove
the problem's well-posedness.

5.2 Galerkin solutions

Instead of working directly in in�nite dimensions, we project our problem onto a �nite-dimensional
space spanned by n basis functions {ϕi}ni=1. If we are able to solve the projected problem, we hope
that as the number of basis functions n increases, the solution will converge to the true solution.
This is the idea behind the Galerkin method, which is widely used in the numerical study of PDEs.

Exercise 1. Use that L2(U) is separable to show that it has a smooth orthonormal basis of functions
{ϕi}∞i=1. that is,

⟨ϕi, ϕj⟩L2(U) = δij , ϕi ∈ C∞
c (U).

Hint. Since L2(U) is separable, it has a countable dense subset {fi}∞i=1 ⊂ L2(U). Since C∞
c (U)

is dense in L2(U), for each fi there exists a sequence {ϕi,n}∞n=1 ⊂ C∞
c (U) that converges to fi

in L2(U). Then, the set {ϕi,n}i,n is a countable dense subset of L2(U), and we can apply the
Gram-Schmidt process to obtain an orthonormal basis.
Alternatively, if U is bounded and smooth, ∆−1 is compact and self-adjoint. Hence, it has a

countable orthonormal basis of eigenfunctions which are smooth by the previous post and induction.

5

https://nowheredifferentiable.com/2024-02-28-PDEs-6-Elliptic_PDE._Well_posedness_and_regularity/#:~:text=for%20smooth%20coefficients.-,Theorem%2016


Let {ϕi}∞i=1 ⊂ C∞
c (U) be an orthonormal basis of L2(U), let Vn := span {ϕi}ni=1 and let

Sn := C(I → Vn) =


n∑

j=1

λj(t)ϕj : λj ∈ C(I)

 .

Consider the problem of �nding un ∈ Sn such that, for all i = 1, ...., n and t ∈ I〈
ϕi, u

′
n(t)

〉
L2
x
+B(ϕi, un(t); t) = (ϕi, f(t)), ⟨ϕi, un(0)⟩L2

x
= ⟨ϕi, g⟩L2

x
, (12)

where ⟨·, ·⟩L2
x
denotes the inner product in L2

x, (·, ·) is the pairing of an element in H1
x,0 with an

element in its dual and B(·, ·, t) is the bilinear form on H1
0 (U) de�ned by

B(w, v; t) :=

∫
U
A(t)∇v · ∇w + (b(t) · ∇v)w + c(t)vw dx.

Equation (12) is known as the Galerkin problem.

Theorem 5.1 (Well-posedness of the Galerkin problem). Under Assumption 1, the Galerkin prob-

lem (12) is well-posed. That is, a unique solution un exists and depends continuously on the initial

data. Furthermore,

∥un∥CtL2
x
+ ∥un∥L2

tH
1
x
+
∥∥u′n∥∥L2

tH
−1
x

≲A,b,c,T ∥f∥L2
tH

−1
x

+ ∥g∥L2
x
. (13)

Proof. We divide the proof into three parts. Existence, continuity, and uniqueness.

a) Existence of solutions: Since the ϕi are orthonormal and we impose un ∈ Sn, solving (12) is
equivalent to �nding λn ∈ C(I → Rn) such that

λ′
n(t) +Bn(t)λn(t) = fn(t), λn(0) = gn, (14)

where we de�ne the matrix Bn(t) ∈ Rn×n and vectors fn(t), gn ∈ Rn as

[Bn(t)]ij := B(ϕi, ϕj ; t), [fn(t)]i := (ϕi, f(t)), [gn]i := ⟨ϕi, g⟩L2
x
.

The equivalence of solving (12) and (14) is obtained by setting un(t) =
∑n

j=1[λn]jϕj .

Since ϕi ∈ C∞
c (U), by the boundedness of the coe�cients in Assumption 1, and by the

construction of Bn,fn. It holds that Bn ∈ L∞
t and fn ∈ L2

t . As a result, according to
standard ODE theory, there exists a unique continuous solution λ to (14). One can even
write out the explicit expression for λ using Duhamel's formula,

λn(t) = e
∫ t
0 Bn(s) dsgn +

∫ t

0
e
∫ t
s Bn(r) drfn(s) ds. (15)

This proves existence.

b) Continuity in the data: The plan will be to apply Gronwall's inequality. By (12) and the
linearity of the inner product, we obtain〈

un(t), u
′
n(t)

〉
L2
x
+B(un(t), un(t); t) = (un(t), f(t)). (16)

Now, since un is smooth and by di�erentiating under the integral sign,〈
un(t), u

′
n(t)

〉
L2
x
=

1

2

(
∥un(t)∥2L2

x

)′
. (17)
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Using Cauchy's inequality ab ≤ 1
2(ϵa

2 + ϵ−1b2), the boundedness of the coe�cients and the
ellipticity of A shows that, for some constants β, ν > 0

B(un(t), un(t); t) ≥ γ ∥un(t)∥2H1
x
− ν ∥un(t)∥2L2

x
(18)

(this is the same as what was proved as in the elliptic case). Whereas, by de�nition of the
dual and by Cauchy's inequality, the bound of the right-hand side of (16) is,

|(un(t), f(t))| ≤ ∥un(t)∥H1
x
∥f(t)∥H−1

x
≤ 1

2
∥un(t)∥2H1

x
+

1

2
∥f(t)∥2

H−1
x

. (19)

Using (17), (18) and (19) in equation (16) we obtain that(
∥un(t)∥2L2

x

)′
+ ∥un(t)∥2H1

x
≲ ∥un(t)∥2L2

x
+ ∥f(t)∥2

H−1
x

. (20)

In particular, (
∥un(t)∥2L2

x

)′
≲ ∥un(t)∥2L2

x
+ ∥f(t)∥2

H−1
x

. (21)

Given di�erentiable v : I → R aa constants α ∈ R and integrable β ∈ L1(I), Gronwall's
inequality states that

v′(t) ≤ αv(t) + β ⇒ v(t) ≤ eαtv(0) +

∫
I
eα(t−s)β(s) ds.

Applying this to (21) gives

∥un(t)∥2L2
x
≲ eαt

(
∥g∥2L2

x
+

∫
I
∥f(t)∥2

H−1
x

dt

)
≲ ∥g∥2L2

x
+ ∥f∥2

L2
tH

−1
x

. (22)

Taking the maximum in (22) gives the �rst part of the bound in (13)

∥un∥2CtL2
x
≲ ∥g∥2L2

x
+ ∥f(t)∥2

L2
tH

−1
x

. (23)

To bound the second term in (13) we combine (22) with (20) to obtain(
∥un(t)∥2L2

x

)′
+ ∥un(t)∥2H1

x
≲ ∥g∥2L2

x
+ ∥f(t)∥2

H−1
x

. (24)

Integrating over I in (24) and applying the fundamental theorem of calculus together with
(23) gives

∥un(t)∥2L2
tH

1
x
:=

∫
I
∥un(t)∥2H1

x
dt ≲ ∥g∥2L2

x
+ ∥f∥2

L2
tH

−1
x

. (25)

To bound u′n consider any v ∈ H1
0,x, and write v = vn + v⊥n where vn is the projection of v

onto Vn with the inner product on H1
x. Since v⊥n is orthogonal to u′n(t) ∈ Vn for each t, from

(12) we have〈
u′n(t), v

〉
L2
x
=

〈
u′n(t), vn

〉
L2
x
= (f(t), vn)−B(un(t), vn; t)

≲ ∥f(t)∥H−1
x

∥vn(t)∥H1
x
+ ∥un(t)∥H1

x
∥vn∥H1

x
≲

(
∥f(t)∥H−1

x
+ ∥un(t)∥H1

x

)
∥v∥H1

x
,

where we used that ∥vn∥H1
x
= ∥v∥H1

x
−
∥∥v⊥n ∥∥H1

x
≤ ∥v∥H1

x
. We deduce that∥∥u′n(t)∥∥H−1

x
≲ ∥f(t)∥H−1

x
+ ∥un(t)∥H1

x
. (26)
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Integrating the square over I and using (25) in (26) gives∥∥u′n(t)∥∥2L2
tH

−1
x

≲ ∥f(t)∥2
L2
tH

−1
x

+ ∥g∥2L2
x
. (27)

Now, combining (23) and (25), (27) and taking square roots, we obtain the desired bound
(13).

c) Uniqueness: To conclude uniqueness, let u1n, u
2
n be two solutions to the Galerkin problem.

Then, wn := u1n − u2n veri�es the homogeneous problem〈
w′
n, v

〉
L2
x
+B(wn, v; t) = 0, ∀v ∈ Vn, and wn(0) = 0.

The same reasoning that proved (21), where now f = 0, shows that(
∥wn(t)∥2L2

x

)′
≲ ∥wn(t)∥2L2

x
.

Now, applying Grönwall's inequality and by the initial condition wn(0) = 0, we obtain for
some constant C > 0

∥wn(t)∥L2
x
≤ eCt ∥wn(0)∥L2

x
= 0. (28)

This shows that wn = 0 and hence u1n = u2n. This proves uniqueness and concludes the proof.

Having proved the well-posedness of the Galerkin problem, we can now show that the parabolic
problem is well-posed. A common technique in PDE is to modify your initial problem P by some
quantity ϵ to obtain a problem Pϵ that is easier to solve. Suppose one can �nd solutions to Pϵ

that are bounded. In that case, a converging subsequence can typically be extracted and, under
appropriate conditions, will converge to a solution to the original problem P . This is exactly what
we show now.

Theorem 5.2 (Well posedness of the parabolic problem). Under Assumption 1, the parabolic prob-

lem (3) is well-posed. That is, there exists a unique weak solution u, which depends continuously on

the initial data with

∥u∥CtL2
x
+ ∥u∥L2

tH
1
x
+
∥∥u′∥∥

L2
tH

−1
x

≲A,b,c,T ∥f∥L2
tH

−1
x

+ ∥g∥L2
x
. (29)

Proof. Let {un}∞n=1 be the sequence of solutions to the Galerkin problem (12) guaranteed by The-
orem (12). By said theorem, un and u′n are bounded sequences in L2

tH
1
0,x and L2

tH
−1
x respectively.

Since these spaces are Hilbert spaces, they are re�exive, and we deduce by the Banach-Alaoglu
theorem that respective subsequences converge in their respective spaces to some u ∈ LtH

1
0,x and

ũ ∈ LtH
−1
x . That is,

u = lim
k→∞

unk
∈ L2

tH
1
0,x, ũ = lim

k→∞
unk

∈ L2
tH

−1
x .

We �rst show that ũ = u′. We have that, given ϕ ∈ C∞
c (I × U)

(ϕ, ũ′) lim
k→∞

(
ϕ, u′nk

)
= lim

k→∞

(
−ϕ′, unk

)
=

(
−ϕ′, u

)
,

where in the �rst equality we used the weak convergence of u′nk
to ũ in LtH

−1
x , in the second equality

we used the de�nition of weak derivative, and in the last we used the convergence of unk
to u in

L2
tH

1
0,x. This shows that u

′ = ũ almost everywhere. We now show that u solves the weak problem
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(8). By construction of the Galerkin solutions in (12) and integrating over I, we deduce for any
v ∈ Snk

(v, u′nk
) + (∇v,A∇unk

) + (∇v, bunk
) + (v, cunk

) = (v, f). (30)

As a result, taking limits in k shows that, for all v ∈ Sn

(v, u′) + (∇v,A∇u) + (∇v, bu) + (v, cu) = (v, f).

Since the space Sn is dense in L2
tH

1
0,x we deduce that

(v, u′) + (∇v,A∇u) + (∇v, bu) + (v, cu) = (v, f), ∀v ∈ L2
tH

1
0,x.

We now check that u(0) = g. To do so, we now consider v ∈ C1
t H

1
0,x ∩ Snk

such that v(T ) = 0.
Then, integrating by parts over I and using (30) gives

− (v′, unk
) + (∇v,A∇unk

) + (∇v, bunk
) + (v, cunk

)

= (v, f) + ⟨v(0), g⟩L2
x
= (v, f) + ⟨v(0), unk

(0)⟩L2
x
.

Taking limits above and by density of Sn in C2
t H

1
0,x we obtain that

⟨v(0), g⟩L2
x
= ⟨v(0), u(0)⟩L2

x
, ∀v ∈ C2

t H
1
0,x.

where we used that by Lemma 4.3 unk
→ u ∈ CtL

2
x. In particular,

⟨w, g⟩L2
x
= ⟨w, u(0)⟩L2

x
, ∀w ∈ H1

0,x.

Since H1
0,x is dense in L2

x this shows that u(0) = g and concludes the proof.

Observation 1. It may seem like the conclusion is impossible. After all, we did not impose that
g|U = 0. So how can we hope that for u(t) to be 0 on ∂U if u(0) = g? The solution lies in the
fact that u ∈ CtL

2
x ∩ L2

tH
1
0,x, but it may not hold that u ∈ CtH

1
0,x. As a result, we only know that

u(t) ∈ H1
0 (U) for almost every t. And it is not required that u(t) ∈ H1

0 (U) for t = 0.

6 Numerical illustrations

In this section, we show some numerical illustrations of the well-posedness of the parabolic problem.
The code to calculate the numerical solutions and generate the �gures using Mathematica can be
downloaded by clicking here. We �rst consider the problem

∂tu−∆u+ cos(x)∇u+ sin(x) = 1 in I × U

u(0) = 1 on U

u = 0 on I × ∂U.

(31)

where we take U = (0, 2π) and I = (0, 1). We use the Galerkin method and set as basis functions
the normalized eigenfunctions of the Laplacian with zero boundary conditions on U ,

ϕj(x) =
1√
π
sin

(
jx

2

)
, j ∈ N.

We show solutions for n = 3 and n = 20; as we can see, as the number of basis functions increases,
the solution converges to 1 when t = 0 and becomes quite oscillatory at the boundary to try to
adapt to the admittedly somewhat incompatible boundary conditions.
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Figure 1: Galerkin solution to the parabolic problem (31) with n = 3 basis functions.

Figure 2: Galerkin solution to the parabolic problem (31) with n = 20 basis functions.
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We also include a �gure to show how the boundary condition g = 1 may be approximated in
H1

0 (U) using the basis functions ϕj . We note that the approximating sequence does not converge
H1

0 as the derivative explodes at the boundary.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

g(x) = 1

n=5

n=10

n=100

Figure 3: Approximation of g = 1 in L2(U) using the basis functions ϕj ∈ H1
0 (U).

Next, we show a case where the exact solution can be calculated. We take U = (0, 1) and
I = (0, 1) and consider the problem

∂tu−∆u+∇u+ 1 = (−1 + x)x+ t(−3 + x+ x2) in I × U

u(0) = 1 on U

u = 0 on I × ∂U,

(32)

The exact solution to (32) is u(t, x) = t(x − 1)x. We show the exact solution and the Galerkin
solution using

ϕj(x) =
√
2 sin(πjx), j ∈ N.

as before for n = 20 basis functions. As we can see, the Galerkin solution and the exact solution
are quite close.
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Figure 4: Exact solution to the parabolic problem (32).

Figure 5: Galerkin solution to the parabolic problem (32) with n = 20 basis functions.
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7 Regularity of the solutions

Having proved the well-posedness of the parabolic problem (3) and its �nite-dimensional Galerkin
approximation, we can now move on to study the regularity of the solutions. The proof is similar
to the one given in the elliptic case but more technical, and we will mainly cite some main results
without proof.
As one expects from the elliptic case, the spatial regularity of the solutions is increased by 2.

Our study of the previous section shows that the regularity of the time derivatives of the solution
is 2 orders lower. In fact, it is two orders lower for each time derivative taken. To be able to
obtain higher regularity however, we will need to impose some compatibility between the boundary
condition f and the initial data g. The following can be found in Section 7.13 of [Evans, 2022]

Theorem 7.1. Let Ω be a bounded domain with smooth boundary ∂Ω. Let L be the elliptic operator

in (2) and assume that the coe�cientsA,b, c are independent of time t and smooth in space. Suppose

that

g ∈ H2k+1
x , and

∂mf

∂tm
∈ L2

tH
2k−2m
x for m = 0, ..., k,

and the compatibility conditions

g0 := g ∈ H1
x,0 g1 := f(0)− Lg0 ∈ H1

x,0 . . . gj :=
∂m−1f

∂tm−1
(0)− Lgm−1 ∈ H1

x,0

are satis�ed. Then,

∂mu

∂tm
∈ L2

tH
2k+2−2m
x for m = 0, ..., k + 1,

and we have the estimate

k+1∑
m=0

∥∥∥∥∂mu

∂tm

∥∥∥∥
L2
tH

2k+2−2m
x

≲
k∑

m=0

∥∥∥∥∂mf

∂tm

∥∥∥∥
L2
tH

2k−2m
x

+ ∥g∥H2k+1
x

.

In consequence, if f ∈ C∞
t,x, g ∈ C∞

x then u ∈ C∞
t,x.

We also show a result where the coe�cients are allowed to depend on time. The following can be
found in Chapter 3 of [Friedman, 1983] and assumes that the coe�cients are Hölder continuous

Theorem 7.2. Let Ω be a bounded domain with smooth boundary and assume that for all t ∈ I,
Aij(t), bj(t), cj(t) ∈ Ck,α(Ω). If u is a classical solution of Lu = f , then u(t) ∈ Ck+2,α(Ω), u′(t) ∈
Ck,α(Ω) for all t ∈ I. In consequence, if f ∈ C∞

t,x, g ∈ C∞
x then u ∈ C∞

t,x.

8 Conclusions

This ends our study of parabolic partial di�erential equations. With it, we bring this series on linear
PDEs to a, at least momentary, end. We began our study with the Fourier transform, then ventured
into the thick jungle of distributions, emerging into the open plains of Sobolev spaces. There, we
lingered, marveling at its vast expanse and many corners�fractional and otherwise. Armed with
newfound knowledge, we marched bravely into the land of elliptic PDEs and, with our trusty aide
Lax-Milgram and a few carefully derived energy estimates, made short work of the enemy. In this
�nal stop, we added time into the mix and, wielding the ideas of Bochner, Galerkin, and Grönwall
(plus our ever-reliable bag of tricks), secured the well-posedness and regularity of solutions.
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At times, our journey may have seemed arduous, long, and winding, but I hope you found it
as rewarding as I did. Though we now move on to fresh pastures, our hard-earned map of the
land of linear PDEs will surely serve us well in future adventures. Next, we turn our sights to new
horizons�and there are many to choose from�such as the nature of probability, Bayesian inference,
and stochastic partial di�erential equations. The road ahead is �lled with possibilities, and I hope
you'll join us for this next leg of our journey.
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