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1 Summary

Partial di�erential equations (PDEs) are a fundamental tool that can be used to describe the

evolution and stationary state of a physical system. These PDEs can be derived by understanding

the processes that cause the �mass� of the system to vary via a balance equation. Namely di�usion,

advection, reaction and sources.

2 Notation

Following the convention in �uid mechanics, vectors in Rd are written in bold to di�erentiate them

from scalars in R. Given u ∈ C1(Rd) and v ∈ C1(Rd → Rd) we write the gradient and divergence

as

∇u := (∂1u, . . . , ∂du), ∇ · v :=
d∑

i=1

∂ivi.

For example, the Laplacian ∆ is equal to ∇ · ∇.

3 Introduction

Welcome to the fourth post on our series on PDEs. In previous posts, we built up the theory of

function spaces necessary to address the fundamental problems of these equations. However, before

we dive into more mathematical waters, it is convenient to get a sense of where these equations

come from and what each term within the PDEs means. This can help us understand more deeply

the equations and motivates the theory to follow.

We begin by giving a physical derivation of the parabolic equation

∂tu−∇ · (A∇u) + b · ∇u+ cu = f, (1)

and its stationary version

−∇ · (A∇u) + b · ∇u+ cu = f,

by calculating the rate of change of the �mass� of the system in terms of its �ow. Then, we introduce

boundary e�ects and wrap up with some examples.
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4 A physical derivation

Warning, proceed with caution: the following section contains a physical derivation of (1). As

a result, some physical intuition and approximate reasoning is used. All functions are supposed

smooth and integrable as needed. This disclaimer out of the way, let's consider a spatial domain

Ω ⊂ Rd �lled with �uid in which some solute is dissolved. Our goal is to describe the concentration

(density) of the solute u(t,x) as the system evolves in time and space. We know that the amount

of �uid within any subregion V ⊂ Ω is

m(t) =

∫
V
u(t,x) dx.

This mass changes as the solute moves around Ω. By conservation of mass, the mass of solute

m(t+ h) at a small instant of time later is equal to the mass m(t) present at time t plus the mass

of any other solute that entered the domain in that small time

m(t+ h) = m(t) +mass that entered at time t.

The solute can only enter V if there is some external source, such as a pipe adding a mass f(t,x)
of solute at point x, or by �owing its boundary ∂V . We now consider this second case. Let F (t,x)
describe the magnitude and velocity of the �ow (�ux ) of the solute and consider a point x on the

boundary. If the �ux F (t,x) is orthogonal to the outward pointing unit normal n(x) at x (that is,

tangent to ∂V at x), no �uid enters V through x. Whereas if the �ux is parallel to n(x), all of the
�ow at x enters V if F (t,x) is pointed in the opposite or leaves if F (t,x) and n(x) have the same

direction. Otherwise, we get something in between, depending on the angle that F (t,x) and n(x)
form. This situation can be described as follows

m(t+ h) = m(t) + h

(∫
V
f(t,x) dx−

∫
∂V

F (t,x) · n(x) dx
)
,

where the minus sign means that if the solute is �owing in the same direction as n, mass decreases,

and if it �ows in the opposite direction, mass increases, as n(x) points outwards. Rearranging terms

and taking limits when h goes to zero gives

∂tm(t) =

∫
V
f(t,x) dx−

∫
∂V

F (t,x) · n(x) dx.

Now, the mass of the solute in V is just the integral of the density over V . Using this and the

divergence theorem gives

∫
V
∂tu(t,x) dx =

∫
V
f(t,x) dx−

∫
V
∇ · F (t,x) dx (2)

This is the integral form of the balance equation. To obtain the non-integral form, note that, since

(2) holds for all V ⊂ U , the integrands must be equal (almost) everywhere, that is

∂tu(t,x) = f(t,x)−∇ · F (t,x) (3)

We would now like to express the �ux in terms of the properties of the �uid and domain. We

recall that F determines the magnitude and direction of the �ow of the solute. We distinguish two

possible reasons for the movement of the solute.

https://en.wikipedia.org/wiki/Divergence_theorem#:~:text=%5Bedit%5D-,For,-bounded%20open%20subsets


a) Di�usion: This is the process that causes the solute to move from areas of lower to higher con-

centration. A possible physical approximation is to consider the di�usion to be proportional

to the gradient of the density, that is

Fdi�usion = −A∇u.

Here, A(x) ∈ Rd×d
+ is called the di�usivity, di�usion coe�cient or viscosity depending on the

context and is a positive de�nite matrix. The di�usivity encodes the preference of the solute

to �ow in one direction or another depending on the properties of the domain itself. If A has

orthonormal eigensystem

{(e1, λ1), (e2, λ2), . . . , (e3, λd)}.

Then

Fdi�usion = −A∇u = −λj(∇u · ej)ej . (4)

That is, the solute di�uses in the direction of ej with speed proportional to λj . For example,

if A is a constant multiple of the identity, there is no preferred direction of �ow. In this case,

one says that the �ow is homogeneous. The minus sign in (4) together with the imposition that

A is positive de�nite means that di�usion occurs from areas of lower to higher concentration.

If di�usion is the only cause of movement in the �uid, F = −A∇u and substituting into the

balance equation (3) gives the (non-homogeneous) heat equation

∂tu = ∇ · (A∇u) + f.

b) Advection: Another possible cause for the �ow of the solute within Ω is that the �uid itself is

moving with some velocity v, transporting along the particles of the solute. The �ux due to

advection is

Fadvection = uv.

The �ux is thus made up of the sum of a di�usion and advection component:

F = Fdi�usion + Fadvection = −A∇u+ uv.

Substituting this into the balance equation (3) gives

∂tu = ∇ · (A∇u)−∇ · (uv) + f. (5)

Finally, we may have a change in the concentration of the solute due to the solute reacting with

another substance. For example, u could be the density of a contaminant which we are eliminating

from the �uid via a chemical process. Alternatively, u could be a radioactive substance which is

decaying. The reaction term is typically denoted by R(u). In the simplest case, R(u) is linear in u,
equal to −ru where the sign of r determines whether the concentration of solute decreases (if r > 0,
as in the previous scenarios) or increases (if r < 0, for example, u could represent the concentration

of a population of algae). Adding this reaction term to our balance equation (5) gives

∂tu︸︷︷︸
Rate of change

= ∇ · (A∇u)︸ ︷︷ ︸
Di�usion

−∇ · (vu)︸ ︷︷ ︸
Advection

− ru︸︷︷︸
Reaction

+ f︸︷︷︸
Source

,

where all terms are functions of t,x. Applying the chain rule we may decompose

∇ · (vu) = v · ∇u+ (∇ · v)u.



The �rst summand represents the transport of the solute due to the movement of the �uid, and the

second the transport due to the contraction of the �uid, if ∇ · v < 0, or its expansion, if ∇ · v = 0.
If ∇ · v = 0, the �uid neither expands nor compresses and is called incompressible. In any case,

writing (for notational consistency) b := v, c = r +∇ · v gives

∂tu−∇ · (A∇u) + b · ∇u+ cu = f. (6)

Equation (6) is a prototypical parabolic equation. Suppose now that our system has and reaches an

equilibrium state (a state in which the concentration of solute stays constant in time once reached).

Then ∂tu = 0 and we obtain

−∇ · (A∇u) + b · ∇u+ cu = f, (7)

Equations (6), and (7) are, respectively, the parabolic and elliptic PDE we were aiming for and, as

we have just seen, each of their parts has a precise physical meaning in terms of di�usion, advection,

reaction and source.

5 Boundary conditions

In an application, the system we are studying will evolve within some smooth bounded domain Ω.
In order for a unique solution to be de�ned it is necessary to impose a boundary condition for what

u is allowed to do on Ω (as well as an initial condition u(0,x) = u0(x) in the parabolic case (6)).

Example 1. Consider the Poisson equation

∆u = f. (8)

If u solves (8), then u+ p also solves (8) where p is any polynomial of degree 0 or 1.

There are multiple types of boundary conditions which can be speci�ed, each one corresponding to

a particular behaviour of the system.

a) Dirichlet boundary condition: This is the additional imposition that

u = g on ∂Ω,

where g is some function de�ned on ∂Ω and u is restricted to ∂Ω through the trace theorem

developed in the previous post. In the context of the di�usion of heat, Ω could be a rod which

is kept at a constant temperature at its endpoints.

b) Robin boundary condition: Here, it is imposed that

−F · n = g on ∂Ω, (9)

where F is the �ux and in our case is F = −A∇u+vu. This condition imposes that a �mass�

g of substance (solute, heat, etc.) enters the domain at each point of the boundary (or leaves

if the minus in (9) is omitted).

c) Neumann boundary condition: This is a particular case of the Robin boundary condition

where there is no di�usion. In this case, (9) becomes

(A∇u) · n = g on ∂Ω.

The above is known as a Neumann boundary condition. If the material is homogeneous, that

is, A = I, the special notation

∂u

∂n
:= ∇u · n = g on ∂Ω,

is used. Here ∂u
∂n is known as the normal derivative.

https://nowheredifferentiable.com/2023-07-12-PDEs-3-Sobolev_spaces/


d) Mixed boundary condition: This corresponds a mix of the preceding. That is, ∂Ω is partitioned

into Γ1,Γ2, and the following boundary conditions are imposed.

u = g1 on Γ1, and − F · n = g2 on Γ2.

e) Periodic boundary conditions: Here the domain is an interval Ω = (a, b) and we require that

for all k ∈ {1, . . . , d}

u(x1, . . . , ak, . . . , xd) = u(x1, . . . , bk, . . . , xd).

Equivalently, u is a function of the torus Rd/(Zd · (b − a)). These boundary conditions are

typically used to approximate a system evolving on a very large domain by working only with

a representative cell [a, b].

Finally, mathematically, it also makes sense to work with in�nite domains such as the whole Eu-

clidean space Rd. In this case, rather than a boundary condition, one imposes suitable decay on

the function such as u ∈ Lp(Rd) or its derivatives such as u ∈ W k,p(Rd).
We end the post by commenting that non-linear terms may be considered in the PDE (6)-(7). Many

examples can be found here. However, the mathematical theory of nonlinear PDE is much more

complicated (think Navier Stokes). The linear case, which we begin to develop in the next post,

will keep us busy for a while.
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