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1 Three point summary

1. There are three ways to de�ne Sobolev spaces with fractional regularity s and integrability p:

a) The spaces W s,p(Ω), Bs,p(Ω) are de�ned by using the analogous to the de�nition of
Hölder spaces. Both spaces are equal when s is not an integer.

b) The space Hs,p(Ω) is de�ned by using the Fourier transform and coincides with W s,p(Ω)
for integer s.

c) All these spaces coincide with Hs(Ω) when p = 2.

2. There is a natural correspondence between negative regularity and the dual. Additionally,
negative regularity can be obtained by di�erentiating functions with higher regularity.

3. Fractional sobolev spaces appear naturally in the study of PDEs. For example, the trace of
Sobolev functionsW s,p(Ω) is equal to the fractional space Bs−1/p,p(∂Ω). And �ner embeddings
and regularity results can be obtained by using these spaces.

2 Introduction

In previous posts, we covered the theory of Sobolev spaces W k,p(Ω) where k is an integer. In the
case k = 2 and when Ω = Rd we saw that this space coincided with Hk(Rd). Furthermore, we also
saw how to de�ne Hs(Rd) when s was any real number. This motivates the following two questions.

1. How can we de�ne Hs(Ω) when Ω is not Rd and s is not an integer ?

2. Is it possible to extend such a de�nition to other orders of integrability p?

In this post, we aim to answer these questions. We will see that both of these questions can be
answered in the a�rmative. If the domain Ω is smooth enough, the �rst point can be resolved by
restricting functions in Hs(Rd) to Ω. The second point is trickier and, in fact, like any good trick
question, has multiple answers. Three, to be precise. This leads to the theory of Bessel spaces,
Sobolev-Slobodeckij spaces and Besov spaces

Hs,p(Ω),W s,p(Ω), Bs,p(Ω).

We will cover the basic properties of these spaces as well as their relationship to each other with
a special focus on W s,p(Ω) which is the most widely used. We will see how these spaces can be
used to obtain �ner regularity results, such as in the trace theorem or Sobolev embeddings. The
material in this post is mostly based on [1], [2], [3], [4]. The material can be quite technical, and
there are multiple 800 plus page books on the subject, so in many cases, we will state the main
results, providing references for the proofs, as well as proving some of the more tractable results.
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2.1 Preliminaries

In terms of notation, we will always denote U by an arbitrary open subset of Rd whereas Ω ⊂ Rd

will be open with a smooth enough boundary (in a sense to be made precise later).
We make frequent use of the fact that, as shown in a previous post, functions in Lp(U) can

be identi�ed as elements of the larger space of distributions D′(U) := C∞
c (U)′. This is done by

identifying a function f ∈ Lp(U) with the linear functional

Tf : ϕ 7→
∫
U
fϕdx.

This identi�cation between f and Tf allows us to extend by duality operators that are de�ned on
C∞
c (U) to Lp(U). For example, given u ∈ Lp(U) ∈ D′(Ω) we can de�ne its Fourier transform Fu

and α-th derivative Dαu to be the distributions de�ned by

(φ,Fu) := (F−1φ, u), (φ,Dαu) := (−1)|α|(Dαφ, u), ∀φ ∈ C∞
c (U).

The above de�nition is justi�ed by the fact that if it turns out that u is smooth and integrable
enough after all, this coincides with the usual de�nitions of F , Dα.

3 Fractional Sobolev spaces: three de�nitions

The de�nitions developed in the next three subsections can be found in [2] page 222.

3.1 Sobolev-Slobodeckij spaces

De�nition 3.1 (Sobolev-Slobodeckij spaces). Let s = k + γ where k ∈ N0, and γ ∈ [0, 1). Then,

given p ∈ [1,∞) and an arbitrary open U ⊂ Rd we de�ne

W s,p(U) :=
{
u ∈ W k,p(U) : ∥u∥W s,p(U) < ∞

}
,

where

∥u∥W s,p(U) :=

∥u∥p
Wk,p(U)

+
∑
|α|=k

∫
U

∫
U

|Dαu(x+ y)−Dαu(x)|p

|y|d+γp
dx dy

 1
p

. (1)

For p = ∞, we de�ne W s,∞(U) := Ck,γ(U). The norm is then given by

∥u∥W s,∞(U) = ∥u∥Ck(U) +
∑
|α|=k

sup
x,y∈U,x̸=y

|Dαu(x)−Dαu(y)|
|x− y|γ

.

We will later de�ne W s,p(U) also for negative s (see De�nition 4.2). We observe that the above
de�nition coincides with our usual de�nition of Sobolev space when s = k ∈ N0 and mimics that of
the Hölder spaces, coinciding exactly when p = ∞.

Exercise 1. Show that W s,p(U) is a Banach space.

Hint. To show that || · ||W s,p(U) is a norm apply Minkowski's inequality to u and to

fu(x, y) :=
Dαu(x+ y)−Dαu(x)

y
d
p
+γ

.

Given a Cauchy sequence show that, since Lp(U) is complete, un → u in Lp(U) and that fun → fu
in Lp(U × U) to conclude that un → u in W s,p(U).
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Though the Sobolev-Slobodeckij spaces can be de�ned for any open set U , they are most useful
when U = Rd or U is regular enough. Otherwise, basic properties such as the following break down

Proposition 3.2 (Inclusion ordered by regularity). Let Ω be an extension domain for W 1,p. Then,

for p ∈ [1,∞) and 0 < s < s′ it holds that

W s′,p(Ω) ↪→ W s,p(Ω).

The proof can be found in [3] page 10. The regularity of the domain is necessary to be able to
extend functions in W 1,p(Ω) to W 1,p(Rd). The result is not true otherwise, and an example is given
in this same reference.

3.2 Bessel potential spaces

We now give a second de�nition of fractional Sobolev spaces through the Fourier transform. Here,
it is immediately possible to de�ne everything for negative s.

De�nition 3.3. Let s ∈ R and u ∈ S ′(Rd). We de�ne the Bessel potential operator Λs by

Λsu := F−1 (⟨ξ⟩s û(ξ)) .

In the de�nition above, we used the notation ⟨ξ⟩ :=
√

1 + |ξ|2. As we saw when we studied
Sobolev spaces through the Fourier transform, using the fact that F is an isometry which transofrms
di�erentiation into polynomial multiplication

u ∈ Hk(Rd) ⇐⇒ Λku ∈ L2(Rd). (2)

Equation (2) motivates the following extension to general p.

De�nition 3.4 (Bessel potential spaces on Rd ). Let s ∈ R and p ∈ (1,∞), we de�ne the Bessel
potential space

Hs,p(Rd) :=
{
u ∈ S ′(Rd) : Λsu ∈ Lp(Rd)

}
,

and give it the norm

∥u∥Hs,p(Rd) := ∥Λsu∥Lp(Rd) .

By construction, Hk,2(Rd) = Hk(Rd).

Exercise 2. Show that ΛsΛr = Λs+r. Use this to show that the following is an invertible isomor-
phism

Λr : Hr+s,p(Rd)
∼−→ Hs,p(Rd).

Hint. Use that ⟨ξ⟩s ⟨ξ⟩r = ⟨ξ⟩s+r and show that the inverse of Λr is Λ−r.

We now extend this to open domains

De�nition 3.5 (Bessel potential spaces on Ω). Let U ⊂ Rd be smooth. We de�ne

Hs,p(U) :=
{
u ∈ D′(U) : there exists v ∈ Hs,p(Rd) with v|U = u

}
,

and give it the norm

∥u∥Hs,p(U) := inf
{
∥v∥Hs,p(Rd) : v|U = u

}
.
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The restriction v|U above is in the sense of distributions. That is, we de�ne u := v|U by

(ϕ, u) := (ϕ, v), ∀ϕ ∈ C∞
c (U).

Observation 1. It is tempting to de�ne ∥u∥Hs,p(U) := ∥Λsv∥Lp(U). However, since the Fourier
transform, and thus Λs, is a nonlocal operator, the norm would depend on the extension v of u to
Rd and be ill-de�ned.

Observation 2. It would also make sense to de�ne Hs,p(U) through complex interpolation. This
is likely di�erent from the above de�nition, however, as we will later see, this will coincide with
the de�nition above when Ω is smooth enough (for example Lipschitz). See also [1] page 328 for a
similar remark.

3.3 Besov spaces

De�nition 3.6 (Besov spaces). Let s = k− + γ where k− ∈ N0, and γ ∈ (0, 1]. Then, given

p ∈ [1,∞) and Ω ⊂ Rd be an arbitrary open set we de�ne

Bs,p(U) :=
{
u ∈ W k−,p(U) : ∥u∥Bs,p(U) < ∞

}
,

where

∥u∥Bs,p(U) :=

∥u∥p
Wk−,p(U)

+
∑
|α|=k

∫
U

∫
U

|Dαu(x+ y)−Dαu(x)|p

|y|d+γp
dx dy

 1
p

.

For p = ∞, we de�ne Bs,∞(U) := Ck−,γ(U).

The above de�nition is extremely similar in form to that of the Sobolev-Slobodeckij spaces 3.1.
In fact, it is equivalent when s /∈ N. The di�erence is that in the de�nition of Besov spaces 3.6, we
require that γ > 0. As a result, always k− < s. We have chosen to indicate this fact by the index
�−� on k−. An equivalent de�nition is possible which extends the above to negative values of s

De�nition 3.7 (Besov spaces, negative s). Let s ∈ R and choose any σ ̸∈ N0 with σ > 0. Then,

given p ∈ [1,∞) we de�ne

∥u∥Bs,p(Rd) =
∥∥Λs−σu

∥∥
Wσ,p(Rd)

.

The requirement σ > 0 is necessary as Bs,p(Rd) ̸= Hs,p(Rd).

Exercise 3. Show that Λr de�nes an invertible isomorphism

Λr : Bs,p(Rd)
∼−→ Hs−r,p(Rd).

Hint. Use de�nition 3.7 and that W σ,p(Ω) = Bσ,p for non-integer σ. Finally, Λr has inverse Λ−r.

The de�nition of Bs,p(Rd) can then be extended to general open sets Ω and U in the same way
as for the Bessel potential spaces, once more the same observations apply.

De�nition 3.8 (Besov spaces on Ω). Let Ω ⊂ Rd be an smooth. We de�ne,

Bs,p(Ω) :=
{
u ∈ D′(Ω) : there exists v ∈ Bs,p(Rd) such that v|Ω = u

}
,

and give it the norm

∥u∥Bs,p(Ω) := inf
{
∥v∥Bs,p(Rd) : v|Ω = u

}
.
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Observation 3. Di�erent authors use di�erent notations for these spaces. For example, in [4], the
notation W s,p(Rd) := Bs,p(Rd) is used. With this notation, one has that, for p ̸= 2, and k ∈ N0,

W k,p(Rd) ̸=
{
u ∈ D′(Rd) : Dαu ∈ Lp(Rd) ∀ |α| ≤ k

}
= W k,p(Rd).

This clashes with the de�nition of integer-valued Sobolev spaces, so we do not use this notation.
Other notations which can be found are the notation Bs,p = Λp

s and Hs,p = Lp
s. See [5] and [6].

3.4 Extension domains

Though it is possible to de�ne fractional spaces for any open set, these are most useful when the
domain is regular enough. We begin by characterizing the set of extension domains for W s,p. The
following result can be found in [7] page 313.

Theorem 3.9 (Plump sets are extension domains). Let Ω ⊆ RN be an open connected set, and

consider p ∈ [1,+∞], and γ ∈ (0, 1). Then, Ω is an extension domain for W γ,p(Ω) if and only if

there exists a constant C > 0 such that

λd(B(x, r) ∩ Ω) ≥ Crd

for all x ∈ Ω and all 0 < r ≤ 1. Where λd is the Lebesgue measure on Rd.

For higher orders of regularity, the following is su�cient: see [1] and [8] section 5.1.

Theorem 3.10. Let Ω ⊂ Rd be open with uniformly Lipschitz boundary and consider p ∈ [1,∞), s ∈
[1,∞). Then, Ω is an extension domain for W s,p, Hs,p, Bs,p.

3.5 Interpolation

Both the Sobolev-Slobodeckij and Bessel potential spaces can be viewed as a way to �ll the gaps
between integer-valued Sobolev spaces. The following uses the concept of complex interpolation.
We will not go into detail as the results will not be essential to us, but merely serve as a nice way
to understand the relationship between the spaces.

Proposition 3.11 (Interpolation ). Let s1 ̸= s2 > 0, p ∈ (1,∞), 0 < θ < 1 and

s = s1(1− θ) + s2θ, p = p1(1− θ) + p2θ.

Then, given an extension domain Ω it holds that

Hs,p(Ω) = [Hs1,p1(Ω), Hs2,p2(Ω)]θ , Bs,p(Ω) = [Bs1,p(Ω), Bs2,p(Ω)]θ ,

where [X,Y ]θ denotes the complex interpolation space.

The result can be found in [4] page 45 for Ω = Rd. The general result follows by extension. In
particular, if we write k := ⌊s⌋ and γ := s− k, then

Hs,p(Ω) =
[
Hk,p(Ω), Hk+1,p(Ω)

]
γ
=
[
Lp(Ω), Hk+1,p(Ω)

]
s/(k+1)

Bs,p(Ω) =
[
Bk,p(Ω), Bk+1,p(Ω)

]
γ
=
[
Lp(Ω), Bk+1,p(Ω)

]
s/(k+1)

.
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4 Relationship between the de�nitions

The following result shows the inclusions between W s,p(Ω), Hs,p(Ω), Bs,p(Ω) and can be found in
[2] page 224 and in [5] page 155.

Theorem 4.1. Let s ≥ 0, ϵ > 0 and Ω an extension domain for Hs+ϵ,p, Bs+ϵ,p. Then,

Hs+ϵ,p(Ω) ⊂ Bs,p(Ω) ⊂ Hs,p(Ω) ∀p ∈ (1, 2]

Bs+ϵ,p(Ω) ⊂ Hs,p(Ω) ⊂ Bs,p(Ω) ∀p ∈ [2,∞),

where the above inclusions are continuous and dense. Furthermore,

W s,p(Ω) =

{
Hs,p(Ω) if s ∈ N0

Bs,p(Ω) if s /∈ N0

. (3)

In consequence, for p = 2,

Hs,2(Ω) = W s,2(Ω) = Bs,2(Ω). (4)

The equality in (3) shows that, as long as we understand the behaviour of Hs,p(Ω) and Bs,p(Ω),
we can completely determine that of W s,p(Ω). It also justi�es the following extension of W s,p(Ω)
to negative regularity.

De�nition 4.2 (Slobodeckij space negative s). Let Ω ⊂ Rd be an extension domain for Hs,p(Ω), Bs,p(Ω).
Then, given p ∈ [1,∞) and any s ∈ R we de�ne

W s,p(Ω) =

{
Hs,p(Ω) if s ∈ N0

Bs,p(Ω) if s /∈ N0

.

The equality for p = 2 in (4) justi�es that, for su�ciently regular domains, all three spaces are
written Hs(Ω). We will prove the left-hand side of this equivalence in Exercise 4. For p ̸= 2, the
inclusions are, in general, strict. An example is constructed in [5] page 161 exercise 6.8.

Exercise 4 (Equivalence of fractional spaces). Show without using Theorem 4.1 that

Hs,2(Rd) = W s,2(Rd).

Hint. We want to show that the norms are equivalent. That is, that

∥u∥Hs,2(Rd) ∼ ∥u∥W s,2(Rd) .

We already know this is the case when s is an integer, so it su�ces to show that the norms are
equivalent for s = γ ∈ (0, 1). That is, that

|u|2γ,2 ∼
∫
Rd

|ξ|2γ |Fu(ξ)|2dξ, ∀γ ∈ (0, 1).

By Plancherel's theorem and a calculation of the Fourier transform of the translation, we have

|u|2γ,2 =
∫
Rd

∫
Rd

|u(x+ y)− u(y)|2

|x|d+2γ
dx dy =

∫
Rd

∥F{u(x+ ·)− u}∥2L2(Rd)

|x|d+2γ
dx

=

∫
Rd

∫
Rd

|e−2πix·ξ − 1|2

|x|d+2γ
|û(ξ)|2 dx dξ =

∫
Rd

(∫
Rd

1− cos(2πξ · x)
|x|d+2γ

dx

)
|û(ξ)|2 dξ.
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To treat the inner integral, we note that it is rotationally invariant, and so, by rotating ξ to the
�rst axis and later changing variable x → x/ |ξ|, we get∫

Rd

1− cos(2πξ · x)
|x|d+2γ

dx =

∫
Rd

1− cos(2π |ξ|x1)
|x|d+2γ

dx

= |ξ|2γ
∫
Rd

1− cos(2πx1)

|x|d+2γ
dx ∼ |ξ|2γ .

The last integral is �nite as, since d + 2γ > d, the tails |ξ| → ∞ are controlled, and since 1 −
cos(2πx1) ∼ x21 ≤ |x|2 the integrand has order −d + 2(1 − γ) > −d for |ξ| ∼ 0 . That said,
substituting this back into the previous expression gives the desired result.

Exercise 5. Use the previous exercise 4 to show that if Ω is an extension domain for Hs, then

Hs,2(Ω) = W s,2(Ω).

Hint. By de�nition 3.4 choose a sequence vn ∈ Hs,2(Rd) such that ∥vn∥Hs,2(Rd) → ∥u∥Hs,2(Ω) in
Hs(Ω). Then,

∥u∥Hs,2(Ω) = lim
n→∞

∥vn∥H2,2(Rd) ∼ lim
n→∞

∥vn∥W s,2(Rd) ≥ ∥u∥W s,2(Ω) .

To obtain the reverse inequality, use the existence of a continuous extension operator E : W s,2(Ω) →
W s,2(Rd) to obtain

∥u∥W s,2(Ω) ∼ ∥Eu∥W s,2(Rd) ≥ ∥u∥Hs,2(Rd) .

The above suggests that, for p = 2, the integrals appearing in the de�nition of the Slobodeckij
spaces 3.1 correspond to di�erentiating a fractional amount of times. This indeed is the case

De�nition 4.3. Given s ∈ [0,+∞) and u ∈ S(Rd) we de�ne the fractional Laplacian as

(−∆)su(x) := F−1(|2πξ|2s û(ξ)).

Proposition 4.4. For γ ∈ (0, 1) and u ∈ Hs(Rd) it holds that

(−∆)γu(x) = C

∫
Rd

u(y)− u(x+ y)

|y|d+2γ
dy,

where C is a constant that depends on d, γ.

Proof. The above equality may seem odd at �rst if we compare it with the integral in 3.1 where a
square appears in the numerator, which gives us our 2 in the 2γ. However, it is justi�ed by the fact
that, by the change of variables y → −y,∫

Rd

u(x)− u(x+ y)

|y|d+2γ
dy =

∫
Rd

u(x)− u(x− y)

|y|d+2γ
dy.

So, we can get the second order di�erence in the numerator by adding the two integrals.∫
Rd

u(y)− u(x+ y)

|y|d+2γ
dy = −1

2

∫
Rd

u(x+ y)− 2u(x) + u(x− y)

|y|d+2γ
dy. (5)

That said, we must show that

|ξ|2γ û(ξ) ∼ F

(∫
Rd

u(x)− u(x+ y)

|y|d+2γ
dy

)
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Using (5) and proceeding as in exercise 4.1 gives

F

(∫
Rd

u(x)− u(x+ y)

|y|d+2γ
dy

)
= −1

2

∫
Rd

(∫
Rd

e−2πiy·ξ − 2 + e2πiy·ξ

|y|d+2γ
dy

)
û(ξ) dξ

=

∫
Rd

(∫
Rd

1− cos(2πy · ξ)
|y|d+2γ

dy

)
û(ξ) dξ =

∫
Rd

1− cos(2πy1)

|y|d+2γ
dy

∫
Rd

|ξ|2γ û(ξ) dξ

∼ |ξ|2γ û(ξ) dξ.

This completes the proof and shows that the explicit expression for C is

C =
1

(2π)2γ

∫
Rd

1− cos(2πy1)

|y|d+2γ
dy.

5 Dual of Sobolev spaces and correspondence with negative

regularity

Negative orders of regularity correspond to the dual of Sobolev spaces. This is best seen in the
integer case. We �rst introduce the notation W s,p

0 (U), Hs,p
0 (U), Bs,p

0 (U) for the closure of C∞
c (U)

in W s,p(U), Hs,p(U), Bs,p(U) respectively. We also introduce the notation p′ = p/(p − 1) for the
conjugate exponent of p. We then have the following result (see [9] pages 326-344 for the case
p = 2).

Theorem 5.1. For all k ∈ Z and p ∈ [1,∞) and Ω an extension domain for W k,p, it holds that

Hk,p
0 (Ω)′ = H−k,p′(Ω), W k,p

0 (Ω)′ = W−k,p′(Ω).

The �rst equality will be discussed in the next subsection and is most easily proven when Ω =
Rd, in which case one can use the corresponding Λs : Hr,p(Rd)

∼−→ Hr−s,p(Rd) together with the
re�exivity of Lp(Rd). The second equality is a direct consequence of the integer order equality
W k,p(Ω) = Hk,p(Ω) of Theorem 4.1. For fractional order regularities, we have the following result,
which can be found in [2] page 228.

Theorem 5.2. Given s > 0, p ∈ [1,∞) and Ω an extension domain, it holds that the spaces

W s,p(Ω), Hs,p(Ω), Bs,p(Ω) are re�exive Banach spaces with duals

W s,p(Ω)′ = W−s,p′

Ω
(Rd), Hs,p(Ω)′ = H−s,p′

Ω
(Rd), Bs,p(Ω)′ = B−s,p′

Ω
(Rd).

where given a space of distributions X on Rd we de�ne XΩ as the space of distributions on Rd which

are supported in Ω. In particular, for Ω = Rd,

W s,p(Rd)′ = W−s,p′(Rd), Hs,p(Rd)′ = H−s,p′(Rd), Bs,p(Rd)′ = B−s,p′(Rd).

Observation 4. Some authors de�ne given s > 0

W−s,p′(Ω)′ := W s,p(Ω)′. (6)

See, for example, [6]. The de�nition in (6) is equivalent to our de�nition when Ω = Rd or when
s ∈ k. However, in other cases, the two de�nitions are not equivalent.

8



5.1 The dual of Hs,p(Rd) and Bs,p(Rd)

For some motivation, we start by considering the case Ω = Rd. Note that, in this setting, Hs,p
0 (Rd) =

Hs,p(Rd).

Exercise 6 (Dual identi�cation). Prove the identi�cation H−s,p′(Rd) = Hs,p(Rd)′ for s > 0 and
p ∈ [1,∞).

Hint. Consider the mapping H−s,p′

0 (Rd) → Hs,p
0 (Rd)′ given by f 7→ ℓf where

ℓf (u) :=

∫
Rd

(Λsu)(Λ−sf).

Show that this mapping is well-de�ned and continuous. To see that it is invertible, show that, by
duality, given ℓ ∈ Hs,p(Rd)′ and u ∈ Hs,p(Rd), it holds that

(u, ℓ) = (Λsu,Λ−sℓ).

Since Λsu ∈ Lp(Rd) we deduce that Λ−sℓ ∈ Lp(Rd)′ and so by the Riesz representation theorem
there exists fℓ ∈ Lp′(Rd) such that Λ−sℓ = ⟨·, fℓ⟩. Show that the inverse of the previous mapping is

Hs,p(Rd)′ −→ H−s,p′(Rd); ℓ = ⟨·,Λsfℓ⟩ → Λsfℓ.

Exercise 7. We also know that since Hs(Rd) is a Hilbert space, so by the Riesz representation
theorem, we have the identi�cation Hs(Rd) = Hs(Rd)′. So by the previous exercise H−s(Rd) =
Hs(Rd) How is this possible?

Hint. It does not hold that H−s(Rd) = Hs(Rd). The problem occurs when considering too many
identi�cations at once, as we are identifying duals using di�erent inner products. By following the
mappings, we obtain isomorphisms

Hs(Rd)
∼−→ Hs(Rd)′

∼−→ H−s(Rd)

u 7−→ ⟨·, u⟩Hs(Rd) =
〈
·,Λ2su

〉
7→ Λ2su.

However, the composition Hs(Rd)
∼−→ H−s(Rd) is ∆2s, which is hardly the identity mapping.

For another example where confusion with this kind of identi�cation can arise, see remark 3 on
page 136 of [10].

5.2 The dual of Hs,p
0 (Ω)

Given an extension domain Ω and s ∈ R , one can de�ne extension and restriction operators,

E : Hs,p(Ω) → Hs,p(Rd), ρ : Hs,p(Rd) → Hs,p(Ω),

which verify ρ ◦E = IHs(Ω). As a result, the restriction is surjective, and we can factor Hs,p(Ω) as

Hs,p(Ω) ≃ Hs,p(Rd)/Hs
Ωc(Rd), (7)

where given a closed set K ⊂ Rd we de�ne

Hs,p
K (Rd) :=

{
u ∈ Hs,p(Rd) : supp(u) ⊂ K

}
,

the support being understood in the sense of distributions Now, given a Banach space X and a
closed subspace Y ↪→ X, elements of X ′ can be restricted to Y , obtaining functionals in Y ′. The
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kernel of this restriction is Y ◦ := {ℓ ∈ X ′ : Y ⊂ ker(ℓ)}. Since, by the Hahn Banach theorem, the
restriction is surjective, we obtain the factorization

Y ′ ≃ X ′/Y ◦. (8)

Applying this to Y = Hk,p
0 (Ω) ↪→ Hk,p(Rd) = X we obtain the result of Theorem 5.1.

Hk,p
0 (Ω)′ ≃ Hk,p(Rd)′/Hk,p

Ωc (Rd)′ ≃ H−k,p′(Rd)/H−k,p′

Ωc (Rd) ≃ H−k,p′(Ω),

where the second equality is by Exercise 6 and the third by (7). This shows that the dual of Hk,p
0 (Ω)

is H−k,p′(Ω). By also using the integer order equivalence of Theorem 4.1, we obtain Theorem 5.1.
As a �nal note, if our domain has a boundary, Hk

0 (Ω)
′ and Hk(Ω)′ are not equal. Rather,

Hk,p(Ω)′ ≃ H−k,p′

Ω
(Rd), H−k,p′(Ω) ≃ H−k,p′(Rd)/H−k,p′

Ωc (Rd).

See [11] Section 4 for more details.

6 Representation theorems

We know that we can isomorphically and bijectively map the spaces Hs,p(Rd) and Bs,p(Rd) with
the lower order spaces Hs−r,p(Rd) and Bs−r,p(Rd) by application of Λr (di�erentiating r times). In
other words, spaces of lower-order regularity are obtained by di�erentiating functions with higher
regularity. We show how to extend this idea to smooth domains in some particular cases.

Theorem 6.1 (Representation of W k,p
0 (Ω)′). Let Ω ⊂ Rd be an extension domain for W k,p where

k ∈ N and p ∈ [1,∞). Then, every element in W−k,p′(Ω) = W k,p(Ω)′ is the unique extension of a

distribution of the form ∑
1≤|α|≤k

Dαuα ∈ D′(Ω), where uα ∈ Lp′(Ω).

Proof. De�ne the mapping

T : W k,p(Ω) −→ Lp(Ω → Rd)

u 7−→ (Dαu)1≤|α|≤k.

Where the notation says that we send u to the vector formed by all its derivatives. By our de�nition
of the norm on W k,p(Ω), we have that T is an isometry and, in particular, continuously invertible
on its image. Denote the image of T by X := Im(T ). Given ℓ ∈ W−k,p′(Ω) we de�ne

ℓ0 : X → R, ℓ0(w) := ℓ(T−1w), ∀w ∈ X.

By Hahn Banach's theorem, we can extend ℓ0 from X to a functional ℓ1 ∈ Lp(Ω → Rd)′ and by the
Riesz representation theorem, we have that there exists a unique f = (fα)1≤|α|≤k ∈ Lp′(Ω → Rd)
such that

ℓ1(w) =

∫
Ω
w · h, ∀w ∈ Lp(Ω → Rd).

By construction, it holds that, for all v ∈ W k,p(Ω)

ℓ(u) = ℓ0(Tv) =

∫
Ω
Tv · f =

∑
1≤|α|≤k

∫
Ω
fαD

αv.
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In particular, this holds for v ∈ D(Ω) and if we set uα := (−1)αfα we obtain that for all v ∈ D(Ω)

ℓ(v) =

v,
∑

1≤|α|≤k

Dαuα

 =: ω(v) (9)

(we recall the notation (v, ω) for the duality pairing). By de�nitions of the norm on W k,p(Ω) and
Cauchy Schwartz, we have that ω is continuous with respect to the norm on W k,p(Ω) and so we

may extend it uniquely to the closure of D(Ω) in W k,p(Ω) which is W k,p
0 (Ω). By (9), the extension

is necessarily ω. This completes the proof.

The above theorem shows that W−k,p′(Ω) can be equivalently formed by di�erentiating k times

functions in Lp′(Ω). The proof also sheds some light as to why W−s,p′(Ω) is the dual of W k,p
0 (Ω)

and not the dual of W k,p(Ω). The reason is that given a su�ciently regular distribution in D′(Ω),

it has a unique continuous extension to an element of W k,p
0 (Ω)′, but not to an element of W k,p(Ω)′.

We note however that, though the extension from D′(Ω) to W−s,p(Ω) is unique, the functions uα
will not be, for example, if |α| > 0 it is possible to add a constant to uα and still obtain the same
result.

Exercise 8. Show that for s = γ + k where k ∈ N0, γ ∈ [0, 1) and p ∈ [1,∞) and an extension
domain for Hs,p, every element in H−s,p′(Ω) can be written in the form w|∂Ω, where

w =
∑

0≤|α|≤k

ΛγDαuα ∈ D′(Rd), where uα ∈ Lp′(Rd).

Hint. Use that Λγ : Hs,p(Rd) → Hk,p(Rd) is an isomorphism and the just proved theorem 6.1
together with the integer equivalence in Theorem 4.1 to show that

Hs,p(Rd)′ =

 ∑
0≤|α|≤k

ΛγDαuα ∈ D′(Rd), where uα ∈ Lp′(Rd)

 .

Now conclude by the de�nition of H−s,p′(Ω) for open domains 3.5.

The above results extend to Besov spaces; see [2] page 227. This gives,

Theorem 6.2. Let k ∈ N0, γ ∈ [0, 1), θ ∈ (0, 1) and p ∈ [1,∞) where Ω is an extension domain for

Bθ,p, Hγ,p. Then,

Bθ−k,p(Ω) =

 ∑
0≤|α|≤k

Dαuα ∈ D′(Ω), where uα ∈ Bθ,p(Ω)


Hγ−k,p(Ω) =

 ∑
0≤|α|≤k

Dαuα ∈ D′(Ω), where uα ∈ Hγ,p(Ω)


W γ−k,p(Ω) =

 ∑
0≤|α|≤k

Dαuα ∈ D′(Ω), where uα ∈ W γ,p(Ω)

 .
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7 Some applications: Trace, embeddings and regularity

7.1 Trace operator

Consider f ∈ Lp(Ω) a PDE of the form

Lu = f in Ω, u|∂Ω = g. (10)

Then, it is necessary to know exactly what boundary data g is admissible. Suppose that L is of
order k so we require u ∈ W k,p(Ω). Will (10) have a solution? To be able to answer this question,
we need to know the image of the trace operator. If g /∈ Tr(W k,p(Ω)), then there is no hope of
�nding a solution. The following theorem characterizes the image of the trace operator and can be
found in [2] page 228 and [1] page 390.

Theorem 7.1 (Fractional trace theorem). Let Ω ⊂ Rd be open with C0,1 boundary. Then, for all

p ∈ (1,∞), s ∈ (1/p,∞), the trace operator Tr can be extended from C(Ω) to a bounded operator

Tr : Hs,p(Ω) → Bs−1/p,p(∂Ω), Tr : Bs,p(Ω) → Bs−1/p,p(∂Ω).

Furthermore, given g ∈ Bs−1/p,p(∂Ω), there exists u ∈ W s,p(Ω) such that Tr(u) = g with

∥u∥W s,p(Ω) ≲ ∥g∥Bs−1/p,p(∂Ω) .

Note that, since we have equality of W s,p(Ω) with Hs,p(Ω) and W s,p(Ω) for respectively non-
integer s, we can also extend

Tr : W s,p(Ω) → Bs−1/p,p(∂Ω).

7.2 Fractional Sobolev embeddings

In this section, we state the fractional analogue of the Sobolev embedding theorems for regularity
γ ∈ (0, 1). Here, the analogous of the exponent p∗k is

De�nition 7.2. Given p ∈ [1,∞) and s > 0, with s ∈ (d/p,∞), we de�ne the Sobolev critical
exponent p∗s by

1

p∗s
:=

1

p
− s

d
.

The natural extension of the Sobolev embedding theorem to the fractional case is the following.
First, we introduce the following notation for the fractional seminorm.

|u|W γ,p(Ω) :=

∫
Rd

∫
Rd

|u(x+ y)− u(y)|
|x|d+γp

dx dy.

See [1] page 262 for the following result.

Theorem 7.3 (Fractional Sobolev-Gagliardo-Niremberg). Given an extension domain Ω for W γ,p

and γ ∈ (0, 1), p ∈ [1,∞), it holds that

∥u∥
Lp∗γ (Ω)

≲ |u|W γ,p(Ω), ∀γ <
d

p

In particular, by interpolation, for all q ∈ [p, p∗γ ].

∥u∥Lq(Ω) ≲ ∥u∥W γ,p(Ω) , ∀γ <
d

p
.
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The critical case γ = d
p corresponding to p∗γ = ∞ is now (see [1] page 265)

Theorem 7.4. Given an extension domain Ω for W γ,p and γ ∈ (0, 1), q ∈ [p,∞), it holds that

∥u∥Lq(Rd) ≲ ∥u∥W γ,p(Ω), γ =
d

p
.

Exercise 9. Using Theorem 7.3 prove Theorem 7.4

Hint. We are in the subcritical case for r < d/p = γ. Extend u to Rd to form ũ. Then, by
Proposition 3.2, we have

∥u∥Lp∗r (Ω) ≤ ∥u∥Lp∗r (Rd) ≲ ∥u∥W r,p(Rd) ≤ ∥u∥W γ,p(Rd) ≲ ∥u∥W γ,p(Ω) .

Conclude by �nding r such that p∗r = q.

The supercritical case γ > d/p can be found in [2] page 224 and [1] page 275.

Theorem 7.5 (Morrey's fractional embedding). Let Ω be an extension domain for W s,p, where

s = k + γ with k ∈ N0, γ ∈ [0, 1) we have a continuous embedding

W s,p(Ω) ↪→ Ck,γ(Ω), ∀γ >
d

p
+ k + γ.

This embedding also holds for γ = d/p+ k + γ provided that γ is non-integer.

As in the non-fractional case, one can also consider higher smoothness on the right-hand side (see
[1] page 290).

Theorem 7.6 (Sobolev embedding into higher smoothness). Let Ω be an extension domain for

W γ,p. Then, given p1, p2 ∈ [1,∞) and 0 ≤ γ1 < γ2 < 1, it holds that

∥u∥W γ1,p1 (Ω) ≲ ∥u∥W γ2,p2 (Ω) , ∀γ2 −
d

p2
= γ1 −

d

p1
.

Exercise 10. Justify via a scaling argument that the condition γ2 − d
p2

= γ1 − d
p1

is necessary for
the embedding in Theorem 7.6.

Hint. Extend to a function on Rd, then swap u with uλ(x) := u(λx)and apply the change of
variables (x, y) → λ(x, y).

Finally, interpolation results are also possible. See [1] page 300.

Theorem 7.7. Let Ω be an extension domain for W γ,p and consider p1, p2 ∈ (1,∞), 0 ≤ γ1 < γ2 ≤
1, and 0 < θ < 1. Then

∥u∥W s,p(Rd) ≲ ∥u∥θW γ1,p1 (Rd)∥u∥
1−θ
W γ2,p2 (Rd)

for all u ∈ W γ1,p1(Rd) ∩W γ2,p2(Rd), where 1
p = θ

p1
+ 1−θ

p2
and s = θγ1+ (1− θ)γ2.

The above results can also be formulated in terms of the Sobolev seminorm. For example, Theorem
7.7 can be formulated as

|u|W s,p(Rd) ≲ |u|θW γ1,p1 (Rd) |u|
1−θ
W γ2,p2 (Rd) .

Higher order embeddings and interpolations can be obtained from the previous cases with regularity
parameter below 1 in combination with the integer case.
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Exercise 11 (Fractional Rellich-Kondrachov). Let Ω be an extension domain for W s,p, then, given
s ≥ 0, p ∈ [1,∞). Set k = ⌊s⌋ and γ = s− k. Then, it holds that

W s,p(Ω) ↪→ Lq(Ω), ∀q ∈ [1, p∗k) and s <
d

p

W s,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p,∞) and s =
d

p

W s,p(Ω) ↪→ Ck,γ(Ω̄) and s >
d

p
,

Hint. Observe that

1

(p∗γ)
∗
k

=
1

pγ
− k

d
=

1

p
− s

d
=

1

p∗s
.

The result follows from Theorem 7.3, Theorem 7.5 together with the integer case embeddings. For
the �rst case, by Theorem 7.3, we have

∥Dαu∥
Lp∗γ (Ω)

≲ ∥Dαu∥W γ,p(Ω) ≲ ∥u∥W s,p(Ω) , ∀ |α| ≤ k.

Then, using the integer case, we conclude

∥u∥Lp∗s (Ω) = ∥u∥
L
(p∗γ )∗

k (Ω)
≲ ∥u∥

Wk,p∗γ (Ω)
≲ ∥u∥W s,p(Ω) .

For the second case, by Theorem 7.3 and reasoning with derivatives up to order k, we obtain
similarly

∥u∥
Wk,p∗γ (Ω)

≲ ∥u∥W s,p(Ω) ,

where by a calculation k = d/p∗γ . So, we conclude once more by using the integer case. Likewise,
for the �nal case, we use Theorem 7.5 to directly obtain

∥u∥Ck,γ(Ω) ≲ ∥u∥W s,p(Ω) .

Below we plot the Sobolev critical exponent p∗s for p = 2 and d = 1, 2, 3. As we can see, it decreases
with d and increases with s. This means that the larger the dimension the more regularity we need
to obtain a bound on the same Lq(Rd) norm. The integrability increasing to in�nity around the
critical threshold s = d/p.

Exercise 12. Let Ω be an extension domain for W s1,p. Show that, given p1, p2 ∈ [1,∞) and
0 ≤ s2 < s1 < ∞, it holds that

W s1,p1(Ω) ↪→ W s2,p2(Ω), s1 −
d

p1
= s2 −

d

p2
.

Hint. Set ki = ⌊si⌋ and γi = si − ki. Apply Theorem 7.6 to the derivatives of order up to k2 to
obtain

∥Dαu∥W γ2,p2 (Ω) ≲ ∥Dαu∥W γ1,p1 (Ω) ≤ ∥u∥W s1,p1 (Ω) , ∀ |α| ≤ k2.

Deduce that

∥u∥W s2,p2 (Ω) ≲ ∥u∥W s1,p1 (Ω) .
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Figure 1: Sobolev critical exponent for p = 2 and d = 1, 2, 3

For more higher order embeddings see also [1] Section 11.4. Finally, embeddings can be similarly
formulated for Besov spaces. See [8] page 219 for the following result.

Theorem 7.8 (Embedding for Besov spaces). Let Ω be an extension domain, and consider 1 ≤
p1 < p2 ≤ ∞,−∞ < s2 < s1 < ∞. Then,

Bs1,p1(Ω) ↪→ Bs2,p2(Ω), s1 −
n

p1
= s2 −

n

p2
.

This and other results can be formulated for the more general spaces Bs,p
q . Where Bs,p = Bs,p

p .
See, [4], [2], [8].
We conclude this post by commenting that given a second-order PDE with smooth coe�cients,

such as

−∆u = f in Ω, u|∂Ω = 0.

One expects that u is two degrees more regular than f . That is, if f ∈ W s,p(Ω), then we should
have u ∈ W s+2,p(Ω). This is indeed the case locally. However, to obtain smoothness up to the
boundary, one also needs ∂Ω to be regular enough. In this case, Lipschitz continuity of Ω is not
su�cient, even if f ∈ C∞(Ω) (see for example [12]). We may comment on this later in a future
post.

References

[1] G. Leoni, A �rst course in fractional Sobolev spaces, Vol. 229, American Mathematical Society,
2023.
URL https://www.google.co.uk/books/edition/A_First_Course_in_Fractional_

Sobolev_Spa/lh2_EAAAQBAJ?hl=en&gbpv=1&dq=giovanni+leoni+fractional+sobolev&

pg=PP1&printsec=frontcover

[2] M. S. Agranovich, Sobolev spaces, their generalizations and elliptic problems in smooth and
Lipschitz domains, Springer, 2015.
URL https://link.springer.com/book/10.1007/978-3-319-14648-5

[3] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces,
Bulletin des sciences mathematiques 136 (5) (2012) 521�573.
URL https://www.sciencedirect.com/science/article/pii/S0007449711001254

15

https://www.google.co.uk/books/edition/A_First_Course_in_Fractional_Sobolev_Spa/lh2_EAAAQBAJ?hl=en&gbpv=1&dq=giovanni+leoni+fractional+sobolev&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/A_First_Course_in_Fractional_Sobolev_Spa/lh2_EAAAQBAJ?hl=en&gbpv=1&dq=giovanni+leoni+fractional+sobolev&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/A_First_Course_in_Fractional_Sobolev_Spa/lh2_EAAAQBAJ?hl=en&gbpv=1&dq=giovanni+leoni+fractional+sobolev&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/A_First_Course_in_Fractional_Sobolev_Spa/lh2_EAAAQBAJ?hl=en&gbpv=1&dq=giovanni+leoni+fractional+sobolev&pg=PP1&printsec=frontcover
https://link.springer.com/book/10.1007/978-3-319-14648-5
https://link.springer.com/book/10.1007/978-3-319-14648-5
https://link.springer.com/book/10.1007/978-3-319-14648-5
https://www.sciencedirect.com/science/article/pii/S0007449711001254
https://www.sciencedirect.com/science/article/pii/S0007449711001254


[4] H. Triebel, Theory of Function Spaces II, Vol. 84, Birkhäuser, 1992.
URL https://link.springer.com/book/10.1007/978-3-0346-0419-2

[5] E. M. Stein, Singular integrals and di�erentiability properties of functions, Princeton university
press, 1970.
URL https://www.degruyter.com/document/doi/10.1515/9781400883882/html

[6] U. Biccari, M. Warma, E. Zuazua, Local regularity for fractional heat equations, Recent Ad-
vances in PDEs: Analysis, Numerics and Control: In Honor of Prof. Fernández-Cara's 60th
Birthday (2018) 233�249.
URL https://link.springer.com/chapter/10.1007/978-3-319-97613-6_12

[7] G. Leoni, A �rst course in Sobolev spaces, American Mathematical Soc., 2017.
URL https://www.google.co.uk/books/edition/A_First_Course_in_Sobolev_Spaces/

qoA8DwAAQBAJ?hl=en&gbpv=0

[8] Y. Sawano, et al., Theory of Besov spaces, Vol. 56, Springer, 2018.
URL https://link.springer.com/book/10.1007/978-981-13-0836-9

[9] L. C. Evans, Partial di�erential equations, Vol. 19, American Mathematical Society, 2022.
URL https://math24.files.wordpress.com/2013/02/partial-differential-equations-by-evans.

pdf

[10] H. Brezis, H. Brézis, Functional analysis, Sobolev spaces and partial di�erential equations,
Vol. 2, Springer, 2011.

[11] M. Taylor, Partial di�erential equations II: Qualitative studies of linear equations, Vol. 116,
Springer Science & Business Media, 2013.

[12] G. Savaré, Regularity results for elliptic equations in lipschitz domains, Journal of Functional
Analysis 152 (1) (1998) 176�201.
URL https://www.sciencedirect.com/science/article/pii/S002212369793158X/pdf?

md5=c646200fe7117dd7d25d27439f36b342&pid=1-s2.0-S002212369793158X-main.pdf

16

https://link.springer.com/book/10.1007/978-3-0346-0419-2
https://link.springer.com/book/10.1007/978-3-0346-0419-2
https://www.degruyter.com/document/doi/10.1515/9781400883882/html
https://www.degruyter.com/document/doi/10.1515/9781400883882/html
https://link.springer.com/chapter/10.1007/978-3-319-97613-6_12
https://link.springer.com/chapter/10.1007/978-3-319-97613-6_12
https://www.google.co.uk/books/edition/A_First_Course_in_Sobolev_Spaces/qoA8DwAAQBAJ?hl=en&gbpv=0
https://www.google.co.uk/books/edition/A_First_Course_in_Sobolev_Spaces/qoA8DwAAQBAJ?hl=en&gbpv=0
https://www.google.co.uk/books/edition/A_First_Course_in_Sobolev_Spaces/qoA8DwAAQBAJ?hl=en&gbpv=0
https://link.springer.com/book/10.1007/978-981-13-0836-9
https://link.springer.com/book/10.1007/978-981-13-0836-9
https://math24.files.wordpress.com/2013/02/partial-differential-equations-by-evans.pdf
https://math24.files.wordpress.com/2013/02/partial-differential-equations-by-evans.pdf
https://math24.files.wordpress.com/2013/02/partial-differential-equations-by-evans.pdf
https://www.sciencedirect.com/science/article/pii/S002212369793158X/pdf?md5=c646200fe7117dd7d25d27439f36b342&pid=1-s2.0-S002212369793158X-main.pdf
https://www.sciencedirect.com/science/article/pii/S002212369793158X/pdf?md5=c646200fe7117dd7d25d27439f36b342&pid=1-s2.0-S002212369793158X-main.pdf
https://www.sciencedirect.com/science/article/pii/S002212369793158X/pdf?md5=c646200fe7117dd7d25d27439f36b342&pid=1-s2.0-S002212369793158X-main.pdf

	Three point summary
	Introduction
	Preliminaries

	Fractional Sobolev spaces: three definitions
	Sobolev-Slobodeckij spaces
	Bessel potential spaces
	Besov spaces
	Extension domains
	Interpolation

	Relationship between the definitions
	Dual of Sobolev spaces and correspondence with negative regularity
	The dual of Hs,p(Rd) and Bs,p(Rd)
	The dual of Hs,p0()

	Representation theorems
	Some applications: Trace, embeddings and regularity
	Trace operator
	Fractional Sobolev embeddings


