
Construction of the stochastic integral

Liam Llamazares

5/22/2022

1 Three line summary

� The Itô integral is a way of integrating random variables against Brow-
nian motion.

� The Itô integral is well de�ned for piecewise constant adapted processes
E and turns them isometrically into square integrable continuous mar-
tingales (M2

I).

� As a result the Itô integral can be extended isometrically to a function
E → M2

I . Furthermore E can be characterised explicitly as the square
integrable adapted processes that are measurable in time and space.

2 Why should I care?

The Itô integral forms the basis of the whole of stochastic calculus. This
comprises SDEs, SPDEs. Knowledge of what functions can be integrated
and what properties the integrated function has is instrumental. In this post
we construct the integral and address both of the preceding issues.

3 Notation

Given two measure spaces (Ω,F), (Ω′,F ′) we abbreviate that f : Ω → Ω′

is measurable between F and F ′ as f : F → F ′. Furthermore we will take
I = [0, T ] or I = [0,+∞) to be the index set of our stochastic processes and
by abuse of notation write F∞ to mean FT in the former case and F∞ in the
latter.
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4 Integrable functions: progressive measura-

bility

As we will soon see the only stochastic process that can be integrated are the
square integrable and progressively measurable. But what does this myste-
rious term mean?

De�nition 1. A stochastic process {Xt}t∈I is progressively measurable if

X : B([0, t])⊗Ft → H

is measurable for all t ∈ I.

Whenever we're given a stochastic process and a �ltration the �rst thing to
check is that it is adapted. In fact, since ω → (t, ω) is Ft → B([0, t]) ⊗ Ft

measurable for all t we have that the following holds.

Lemma 1. Progressively measurable processes are adapted.

Additionally, stochastic processes can be viewed path-wise but also be seen
as functions of a product space, this leads to the following de�nition.

De�nition 2. We say that a stochastic process {Xt}t∈I is jointly measurable

if

X : B(I)⊗F∞ → H
where F∞ := ∨t∈IFt.

In the de�nition of progressive measurability we imposed some kind of mea-
surability, in fact the condition leads to the following

Proposition 1 (Progressive implies jointly measurable). Let I ⊂ R, and

{Xt}t∈I be progressively measurable. Then it is also jointly measurable.

Proof. Given A ∈ H we have that

X−1
∣∣
[0,t]×Ω

(A) ∈ B([0, t])⊗Ft ∀t ∈ I

⇐⇒ X−1(A) ∩ ([0, t]× Ω) ∈ B([0, t])⊗Ft ∀t ∈ I

=⇒ X−1(A) =
⋃
n∈N

X−1(A) ∩ ([0, tn]× Ω) ∈ B(I)⊗F∞

Where tn ∈ I is a sequence converging to the endpoint of I.



Note however that the converse isn't true, for example if X is constant in t
then, for some B ⊂ Ω

X−1(A) = I ×B; X−1|[0,t]×Ω(A) = [0, t]×B

So it su�ces to consider some Construction where B ∈ F∞ but B ̸∈ Ft. It
is also important to note the following.

Lemma 2 (SDE coe�cients are progressive). Let Xt be a progressively mea-

surable stochastic process and let f : H → G be measurable, then f(t,Xt) is

progressively measurable.

Proof. This follows from considering (t, ω) → (t,X(t, w)). Where the arrow
is measurable as, due to the progressive measurability of X, each component
is adapted.

The di�erence between progressively measurable and adapted is quite sub-
tle. In fact every adapted and jointly measurable stochastic process has a
progressively measurable modi�cation (see [1] page 5). The proof of this fact
is very lengthy and technical. Thus, if X ∈ L2(B(I) ⊗ F∞) (and in partic-
ular is jointly measurable), we may always choose a representative that is
progressively measurable. This leads to some authors giving the de�ntion of
the class of Itô integrable functions in terms of joint measurability instead
of progressive measurability. In the end both lead to equivalent de�nition.
That said, this technicality is usually of little importance due to the following
result.

Lemma 3 (Continuity is progressive). Let {Xt}t∈I be a left or right contin-

uous stochastic process. Then X is progressively measurable.

Proof. Suppose for example that X is right continuous, then we consider

X(n)
s (ω) = X(k+1)!/2n(ω) for

kt

2n
< s ≤ k + 1

2n
t

The pre-image of any set A ∈ H is of the form

X−1(A) =
⋃
i∈N

(ti, ti+1]×X−1
ti

(A).

So X(n) is progressively measurable. We conclude as by right continuity
limn→∞X(n) = X.



Also we used that the pointwise limit of progressively measurable functions is
progressively measurable. This is because the pointwise limit of measurable
functions is measurable.

Lemma 4. For any p ∈ [1,∞), the elementary processes are Lp-dense in

the space Lp(I ×Ω) of progressively measurable processes in Lp(B(I)⊗F∞).
That is, for any Y ∈ Lp there is a sequence Vn of elementary functions such

that

E[
∫
I

|Y (t)− Vn(t)|p dt] −→ 0.

The proof of this fact is also rather technical and long. See Chapter 2 of [2].
Furthermore, we have that

Theorem 1. Let (E , ∥ · ∥L2(I×Ω),Ft) be the set of simple stochastic processes

adapted to {Ft}t∈I with the L2 norm. Then it's completion is

L2(I × Ω) := {X ∈ L2([0, T ]× Ω) progressively measurable }.

The proof of this is by the previous approximation result together with the
fact that the Ito integral of simple processes is an isometry and the fact that
L2(I × Ω) is complete. This last property follows from the completeness of
the Lp spaces and the fact that pointwise limits of progressively measurable
functions are progressively measurable (and from every convergent sequence
in Lp we can extract a convergent sub-sequence which must also converge to
the Lp limit). This �nally leads us to be able to de�ne the stochastic integral.

Theorem 2. Let t ∈ I and de�ne for a simple process f ∈ E∫ t

0

XdW =
N−1∑
n=0

X(tn)(W (t ∩ tn+1)−W (tn)).

Then the above de�nes an isometry to the space of continuous square inte-

grable martingales M2
I as

int :
(
E , ∥ · ∥L2(I × Ω)

)
−→

(
MI2, ∥ · ∥L2(I × Ω)

)
X(t) 7−→

∫
0tXdW.

Thus, it extends uniquely to the closure E = L2(I × Ω). Furthermore the

extension also has image in M2
I .



Proof. The �rst part of the proof is a calculation using the de�nition of in-
tegral of simple process, the adaptedness of X and the de�nition of W . The
second part is slightly more tricky. The fact that X is a martingale is due to
L2 convergence (L1 would su�ce).

Then, one takes a sequence of elementary processes Xn converging to X.
By the �rst part one may apply Doob's martingale inequality and L2 con-
vergence to get a measure of the set where the supremum

sup
t∈I

|Xn(t)−Xm(t)| > 2−k,

which can be made small for n,m → ∞. One can then extract a subsequence
and apply Borel-Cantelli to deduce that the above supremum goes to 0 almost
everywhere. This shows thatXn is almost everywhere Cauchy in L∞ and thus
converges almost everywhere to some continuous process Y . This process
must be X by L2 convergence to X which concludes the proof.
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