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1 Three line summary

� Conditional expectations exist in a natural way for simple functions, by
taking extensions they also exist for integrable functions to a Banach
space L1(Ω → E).

� Using conditional expectations we can de�ne what a martingale is just
like in the real case.

� The space of continuous p-integrable martingales is a Banach space.

2 Why should I care?

Banach valued martingales form the basis of SPDEs. This is because anal-
ogously to Itô integration of real-valued processes. Integrating against a
Wiener process valued in a Banach space the same will produce a square
integrable continuous martingale.

3 Conditional expectation

In graduate-level probability courses, given a σ−algebra G one shows that
by applying Radon-Nikodyn's theorem, for any real-valued random variable
X ∈ L1(Ω → R) there exists a conditional expectation EG[X] verifying that∫

A

EG[X] =

∫
A

X, ∀A ∈ G.
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Of course, now that we have created an integral for integral random variables
to a Banach space L1(Ω → X) we would like to see whether such a conditional
expectation also exists for these functions. If we are given a simple function

X =
n∑

k=1

xk1Ak
, xk ∈ E,Ak ∈ G.

It is a simple calculation to show that, since 1Ak
are real-valued and thus

EG[1Ak
] are well de�ned, then

EG[X] =
n∑

k=1

xkEG[1Ak
],

veri�es the desired formula. Furthermore, we have that EF is a linear, and
pointwise continuous operator with

∥EG[X]∥ ≤
n∑

k=1

∥xk∥EG[1Ak
] = EG

[
n∑

k=1

∥xk∥1Ak

]
= EG [∥X∥] .

This allows us to show the following

Theorem 1 (Existence and uniqueness of conditional expectation). Let X ∈
L1(Ω → E) for some Banach space E. Then X has a conditional expectation
satisfying

∥EG[X]∥ ≤ EG [∥X∥] .
Proof. We have already proved the above inequality for simple processes.
By the previous post, [1] we can take Xn converging to X in L1(Ω → E) to
obtain that

∥EG[Xn −Xm]∥ ≤ EG [∥Xn −Xm∥]
=⇒ E[∥EG[Xn]− EG[Xm]∥] ≤ E [∥Xn −Xm∥] → 0

As a result, EG[Xn] is a Cauchy sequence in L1(Ω → E) and converges
to some function Y , passing to the limit in the de�ning equation for the
conditional expectation shows that Z = EG[X]. Finally, to prove uniqueness
we have that if both Z1, Z2 satisfy∫

A

Z1 =

∫
A

X =

∫
A

Z2, ∀A ∈ G.

Then using the linearity of the integral we obtain that w(Z1) = w(Z2) for all
linear function w, so Z1 = Z2.



4 Martingales

Okay, so we leveraged some inequalities to prove the existence of a conditional
expectation. This done, the following de�nition mimicking the real case is
quite natural

De�nition 1. Let {M(t)}t∈I , be a stochastic process on (Ω,F ,P) with a
�ltration {Ft}t∈I . The process M is called an Ft-martingale, if:

1. M(t) ∈ L1(Ω → E) for all t ∈ I

2. M(t) : Ft → B(E) for all t ∈ I,

3. EFs [M(t)] = M(s) for all s ≤ t.

The concept of submartingale is de�ned by replacing the equality in 3. with
a ≥. Let us abbreviate EFt by Et. Then, as in the real case, we have the
following.

Lemma 1 (Norm is submartingale). Let M(t) be a martingale, then ∥M(t)∥
is a martingale

Proof. We recall that, by the Hahn Banach theorem, it holds for any metric
space that given y ∈ E

∥z∥ = sup
ℓ∈E∗:∥ℓ∥=1

ℓ(z)

As a result, by the linearity of the integral and abbreviating the supremum
to just supℓ,

∥M(s)∥ = ∥Es[M(t)]∥ = sup
ℓ

ℓ (Es[M(t)]) = sup
ℓ

∥Es [ℓ(M(t))] ∥

≤ Es

[
sup
ℓ

ℓ(M(t))

]
= Es [∥M(t)∥]

Let us recall the following result for real-valued martingales

Lemma 2 (Doob's maximal Martingale inequality). Let {Xk}∞k=1 be a real-
valued sub-martingale. Then it holds that∥∥∥∥ max

k∈{1,...,n}
Xk

∥∥∥∥
Lp(Ω)

≤ p

p− 1
∥Xn∥Lp(Ω)



As a consequence, if Xt, t ∈ [0, T ] is left (or right) continuous then∥∥∥∥max
t∈[0,T ]

Xk

∥∥∥∥
Lp(Ω)

≤ p

p− 1
∥XT∥Lp(Ω).

The idea of the above result is that, since Xk is a submartingale, Xk ≲
Xk+1 ≲ ... ≲ Xn. Getting from the continuous to the discrete case is possible
by using the continuity of X and approximating it on some �ner and �ner
mesh t0, ..., tn. This said, applying Doob's maximal martingale inequality
together with the Lemma 1 gives that

Theorem 2 (Maximal Inequality). Let p > 1 and let E be a separable Banach
space. If M(t), is a right-continuous E-valued Ft-martingale, then

(
E

(
sup

t∈[0,T ]

∥M(t)∥p
)) 1

p

≤ p

p− 1
sup

t∈[0,T ]

(E (∥M(t)∥p))
1
p

=
p

p− 1
(E (∥M(T )∥p))

1
p

Proof. This follows by using that ∥M(t)∥ is a sub-martingale and Doob's
maximal inequality.

Doob's inequality is essentially an equality between di�erent function norms
we can place on the space of continuous Martingales and will provide a very
powerful tool later on.

Corollary 1. Let M be a (left or right) continuous martingale to a separable
Banach space E. Then the following are equivalent

� M ∈ L̂∞([0, T ] → L̂2(Ω → E))

� M ∈ L̂2(Ω → L̂∞([0, T ] → E))

� E[∥M(T )∥2] < ∞

Where we recall from the previous post that L̂p symbolizes that M may not
be separately valued and only have an integrable norm. That said, the same
reasoning shows that the above result also holds for the integrable Lp spaces.

A useful space of Martingales is as follows



De�nition 2. Let M(t) be a E valued martingale with index set I = [0, T ],
then we de�ne

M2
T (E) :=

{
continuous martingales M : E[∥M(T )∥2] < ∞

}
and give it the norm

∥M∥M2
T (E) := E[∥M(T )∥2].

By Theorem 2 we have that

M2
T (E) ⊂ L̂∞([0, T ] → L̂2(Ω → E)) ∩ L̂2(Ω → L̂∞([0, T ] → E)).

and that any of the norms of these spaces is equivalent to the one set on
M2

T (E). This is useful in the following result

Proposition 1. Let E be a separable Banach space, then M2
T (E) is a Banach

space.

Proof. By the previous observation and the completeness of the L̂p spaces
proved in the previous post, M2

T (E) is a subspace of a Hilbert space. As a
result, it is su�cient to show that it is closed. Let Mn converge to M . Then,
by the equivalence of the norms we have that Mn(t) → M(t) ∈ L̂1(Ω →
E) ⊂ L̂2(Ω → E) so that for all A ∈ Fs∫

A

M(s)dP = lim
n→∞

∫
A

Mn(s)dP = lim
n→∞

∫
A

Mn(t)dP =

∫
A

M(t)dP.

This shows that M is a martingale. Furthermore, as was seen in the previous
post, there exists a subsequence Mnk

such that

lim
n→∞

Mnk
(·, ω) = M(·, ω) ∈ L̂∞([0, T ] → E) a.e. ω ∈ Ω

Since Mnk
(·, ω) are continuous and continuity is preserved by uniform limits

this proves that M is continuous almost everywhere. This concludes the
proof.

In future installments, we will prove that a Banach valued Wiener process
belongs to this space and use it to de�ne the stochastic integral that leads
to the construction of SPDEs.



Proposition 2. Let W (t) be a E valued Σ-Wiener process with respect to a
�ltration Ft. Then W (t) ∈ M2

T (E).

Proof. It is a martingale as it is adapted and, given A ∈ GS and u ∈ E, by
the linearity of the integral and Independence of W (t)−W (s) with Gs〈∫

A

W (t)−W (s)dP, u
〉

=

∫
A

⟨W (t)−W (s), u⟩ dP

= P(A)E[⟨W (t)−W (s), u⟩] = 0

As a result∫
A

W (t)dP =

∫
A

W (s)dP = 0 ∀A ∈ Gs =⇒ Es[W (t)] = W (s).

Finally, we have that E[W (t)2] = t < ∞ for all t and W is continuous by
construction. This concludes the proof.
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