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1 Three line summary

e Conditional expectations exist in a natural way for simple functions, by
taking extensions they also exist for integrable functions to a Banach
space L'(Q2 — E).

e Using conditional expectations we can define what a martingale is just
like in the real case.

e The space of continuous p-integrable martingales is a Banach space.

2 Why should I care?

Banach valued martingales form the basis of SPDEs. This is because anal-
ogously to Itd integration of real-valued processes. Integrating against a
Wiener process valued in a Banach space the same will produce a square
integrable continuous martingale.

3 Conditional expectation
In graduate-level probability courses, given a o—algebra G one shows that

by applying Radon-Nikodyn’s theorem, for any real-valued random variable
X € L'(2 — R) there exists a conditional expectation Eg[X] verifying that

A&m:Ax VAEG.



Of course, now that we have created an integral for integral random variables
to a Banach space L'(Q — X) we would like to see whether such a conditional
expectation also exists for these functions. If we are given a simple function

X:Z[EklAk, IkEE,AkEQ.
k=1

It is a simple calculation to show that, since 14, are real-valued and thus
Eg[1a4,] are well defined, then

]Eg[X] = Z ZL‘kEg[lAk],

verifies the desired formula. Furthermore, we have that Ex is a linear, and
pointwise continuous operator with

= Eg [[|XI]-

IBGIX]II < D llal|Eglla,] = Eg
k=1

n
> llzlita,
k=1

This allows us to show the following

Theorem 1 (Existence and uniqueness of conditional expectation). Let X €
LY(Q — E) for some Banach space E. Then X has a conditional expectation
satisfying

|IEg[X]]| < Eg [|| X[]]-

Proof. We have already proved the above inequality for simple processes.
By the previous post, [1] we can take X,, converging to X in L'(Q — E) to
obtain that

[Bg[Xn — Xin]l| < Eg [[| X0 = Xonl]
= E[|[Eg[Xn] = Eg[Xn][] < E[[|Xn = Xmll] =0
As a result, Eg[X,] is a Cauchy sequence in L'(Q) — E) and converges
to some function Y, passing to the limit in the defining equation for the

conditional expectation shows that Z = Eg[X]. Finally, to prove uniqueness
we have that if both Z;, Z, satisfy

A A A

Then using the linearity of the integral we obtain that w(Z;) = w(Zs) for all
linear function w, so Z; = Zs. O



4 Martingales

Okay, so we leveraged some inequalities to prove the existence of a conditional
expectation. This done, the following definition mimicking the real case is
quite natural

Definition 1. Let {M(t)}ier, be a stochastic process on (Q,F,P) with a
filtration {F;}ier. The process M is called an Fi-martingale, if:

1. M(t) e L"(Q — E) forallt €I
2. M(t) : Ft = B(E) forallt eI,
3. Ex [M(t)] = M(s) for all s <t.

The concept of submartingale is defined by replacing the equality in 3. with
a >. Let us abbreviate Ez, by E;. Then, as in the real case, we have the
following.

Lemma 1 (Norm is submartingale). Let M(t) be a martingale, then ||M(t)||
15 a martingale

Proof. We recall that, by the Hahn Banach theorem, it holds for any metric
space that given y € F

|2l =sup £(2)
teE*:|j¢]|=1

As a result, by the linearity of the integral and abbreviating the supremum
to just supy,

M) = I A0 = sup € B, [0(0)]) = s [, [ ()]
<. [sup (1) | = E. (IO

O
Let us recall the following result for real-valued martingales

Lemma 2 (Doob’s maximal Martingale inequality). Let { Xy}, be a real-
valued sub-martingale. Then it holds that
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As a consequence, if Xy, t € [0,T) is left (or right) continuous then

max Xy

P
te[0,T] — 1 H THLP(Q)

LP(Q)

The idea of the above result is that, since X is a submartingale, X, <
Xy S .o S X,,. Getting from the continuous to the discrete case is possible
by using the continuity of X and approximating it on some finer and finer
mesh %y, ....t,. This said, applying Doob’s maximal martingale inequality
together with the Lemma 1 gives that

Theorem 2 (Maximal Inequality). Let p > 1 and let E' be a separable Banach
space. If M(t), is a right-continuous E-valued Fi-martingale, then

B =

<E<sup r|M<t>||p>)p < L sup (B(|M(©)]")
te[0,7) p te[0,T]

p P
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Proof. This follows by using that ||M(t)|| is a sub-martingale and Doob’s
maximal inequality. [

Doob’s inequality is essentially an equality between different function norms
we can place on the space of continuous Martingales and will provide a very
powerful tool later on.

Corollary 1. Let M be a (left or right) continuous martingale to a separable
Banach space E. Then the following are equivalent

o M e L>([0,T] = L*(Q = E))
o M e L*Q— L>([0,T] = E))
o E[|M(T)]] < o0

Where we recall from the previous post that L» symbolizes that M may not
be separately valued and only have an integrable norm. That said, the same
reasoning shows that the above result also holds for the integrable LP spaces.

A useful space of Martingales is as follows



Definition 2. Let M(t) be a E valued martingale with index set I = [0,T],
then we define

MZ(E) := { continuous martingales M : E[||M(T)|°] < 0o}
and give il the norm
1M | . 1y == ELIM (D)),
By Theorem 2 we have that
ME(E) € L=([0,T] — L*(Q — E)) N L*(Q — L=([0,T] = E)).

and that any of the norms of these spaces is equivalent to the one set on
MZ(E). This is useful in the following result

Proposition 1. Let E be a separable Banach space, then M2(E) is a Banach
space.

Proof. By the previous observation and the completeness of the L» spaces
proved in the previous post, M%(E) is a subspace of a Hilbert space. As a
result, it is sufficient to show that it is closed. Let M,, converge to M. Then,
by the equivalence of the norms we have that M,(t) — M(t) € L'(Q —
E) C L2(Q — E) so that for all A € F,

/ M(s)dP = lim [ My(s)dP = lim | M,(t)dP = / M (t)dP.

This shows that M is a martingale. Furthermore, as was seen in the previous
post, there exists a subsequence M,,, such that

lim M,, (-,w)=M(-,w) e L®([0,T] = E) ae weq

n—oo
Since M, (-,w) are continuous and continuity is preserved by uniform limits
this proves that M is continuous almost everywhere. This concludes the
proof. O

In future installments, we will prove that a Banach valued Wiener process
belongs to this space and use it to define the stochastic integral that leads
to the construction of SPDEs.



Proposition 2. Let W(t) be a E valued - Wiener process with respect to a
filtration Fy. Then W (t) € MA(E).

Proof. It is a martingale as it is adapted and, given A € Gs and u € F, by
the linearity of the integral and Independence of W (t) — W(s) with G

</AW(t) — W(s)d]P’,u> = /A (W(t) —W(s),u)dP
=P(AE[W(t) — W(s),u)] =0
As a result

/ W(t)dP = / W(s)dP =0 VA€, = E,[W(®)]=W(s).
A A

Finally, we have that E[W (¢)?] = ¢t < oo for all ¢ and W is continuous by
construction. This concludes the proof. O
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